69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From Belly to Brain: Targeting the Ghrelin Receptor in Appetite and Food Intake Regulation

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ghrelin is the only known peripherally-derived orexigenic hormone, increasing appetite and subsequent food intake. The ghrelinergic system has therefore received considerable attention as a therapeutic target to reduce appetite in obesity as well as to stimulate food intake in conditions of anorexia, malnutrition and cachexia. As the therapeutic potential of targeting this hormone becomes clearer, it is apparent that its pleiotropic actions span both the central nervous system and peripheral organs. Despite a wealth of research, a therapeutic compound specifically targeting the ghrelin system for appetite modulation remains elusive although some promising effects on metabolic function are emerging. This is due to many factors, ranging from the complexity of the ghrelin receptor (Growth Hormone Secretagogue Receptor, GHSR-1a) internalisation and heterodimerization, to biased ligand interactions and compensatory neuroendocrine outputs. Not least is the ubiquitous expression of the GHSR-1a, which makes it impossible to modulate centrally-mediated appetite regulation without encroaching on the various peripheral functions attributable to ghrelin. It is becoming clear that ghrelin’s central signalling is critical for its effects on appetite, body weight regulation and incentive salience of food. Improving the ability of ghrelin ligands to penetrate the blood brain barrier would enhance central delivery to GHSR-1a expressing brain regions, particularly within the mesolimbic reward circuitry.

          Related collections

          Most cited references340

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread reward-system activation in obese women in response to pictures of high-calorie foods.

          Behavioral studies have suggested that exaggerated reactivity to food cues, especially those associated with high-calorie foods, may be a factor underlying obesity. This increased motivational potency of foods in obese individuals appears to be mediated in part by a hyperactive reward system. We used a Philips 3T magnet and fMRI to investigate activation of reward-system and associated brain structures in response to pictures of high-calorie and low-calorie foods in 12 obese compared to 12 normal-weight women. A regions of interest (ROI) analysis revealed that pictures of high-calorie foods produced significantly greater activation in the obese group compared to controls in medial and lateral orbitofrontal cortex, amygdala, nucleus accumbens/ventral striatum, medial prefrontal cortex, insula, anterior cingulate cortex, ventral pallidum, caudate, putamen, and hippocampus. For the contrast of high-calorie vs. low-calorie foods, the obese group also exhibited a larger difference than the controls did in all of the same regions of interest except for the putamen. Within-group contrasts revealed that pictures of high-calorie foods uniformly stimulated more activation than low-calorie foods did in the obese group. By contrast, in the control group, greater activation by high-calorie foods was seen only in dorsal caudate, whereas low-calorie foods were more effective than high-calorie foods in the lateral orbitofrontal cortex, medial prefrontal cortex, and anterior cingulate cortex. In summary, compared to normal-weight controls, obese women exhibited greater activation in response to pictures of high-calorie foods in a large number of regions hypothesized to mediate motivational effects of food cues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reward mechanisms in obesity: new insights and future directions.

            Food is consumed in order to maintain energy balance at homeostatic levels. In addition, palatable food is also consumed for its hedonic properties independent of energy status. Such reward-related consumption can result in caloric intake exceeding requirements and is considered a major culprit in the rapidly increasing rates of obesity in developed countries. Compared with homeostatic mechanisms of feeding, much less is known about how hedonic systems in brain influence food intake. Intriguingly, excessive consumption of palatable food can trigger neuroadaptive responses in brain reward circuitries similar to drugs of abuse. Furthermore, similar genetic vulnerabilities in brain reward systems can increase predisposition to drug addiction and obesity. Here, recent advances in our understanding of the brain circuitries that regulate hedonic aspects of feeding behavior will be reviewed. Also, emerging evidence suggesting that obesity and drug addiction may share common hedonic mechanisms will also be considered. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans.

              Ghrelin is a novel growth hormone-releasing peptide, originally identified in the rat stomach as the endogenous ligand for the growth hormone secretagogue-receptor (GHS-R1a). Ghrelin is involved in the regulation of GH release, but it has recently been suggested that ghrelin may have other actions, including effects on appetite, carbohydrate metabolism, heart, kidney, pancreas, gonads, and cell proliferation. The distribution of ghrelin, its functional receptor (type 1a) and the unspliced, non-functional GHS-R type 1b mRNA expression was investigated in various human tissues using classical and real-time reverse transcription and polymerase chain reaction. GHS-R1a was predominantly expressed in the pituitary and at much lower levels in the thyroid gland, pancreas, spleen, myocardium and adrenal gland. In contrast, ghrelin was found in the stomach, other parts of the gut and, indeed, in all the tissues studied (adrenal gland, atrium, breast, buccal mucosa, esophagus, Fallopian tube, fat tissue, gall bladder, human lymphocytes, ileum, kidney, left colon, liver, lung, lymph node, muscle, muscle, myocardium, ovary, pancreas, pituitary, placenta, prostate, right colon, skin, spleen, testis, thyroid, and vein). GHS-R1b expression was also widespread in all tissues studied. The significance of the widespread tissue distribution of ghrelin remains to be determined. These data suggest that ghrelin might have widespread physiological effects via different, partly unidentified, subtypes of the GHS-R in endocrine and non-endocrine tissues.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                27 January 2017
                February 2017
                : 18
                : 2
                : 273
                Affiliations
                [1 ]Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; k.howick@ 123456umail.ucc.ie (K.H.); j.cryan@ 123456ucc.ie (J.F.C.)
                [2 ]School of Pharmacy, University College Cork, Cork, Ireland; brendan.griffin@ 123456ucc.ie
                [3 ]Food for Health Ireland, University College Cork, Cork, Ireland
                [4 ]Alimentary Pharmabiotic Centre (APC) Microbiome Institute, University College Cork, Cork, Ireland
                Author notes
                [* ]Correspondence: h.schellekens@ 123456ucc.ie ; Tel.: +353-21-420-5429
                Article
                ijms-18-00273
                10.3390/ijms18020273
                5343809
                28134808
                edc6a542-aa35-454f-958a-9747654c0f29
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 December 2016
                : 19 January 2017
                Categories
                Review

                Molecular biology
                ghrelin,desacyl-ghrelin,appetite,ghsr-1a,obesity,cachexia,food reward,mesolimbic reward circuitry,blood brain barrier

                Comments

                Comment on this article