81
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a Transformation System for Chlamydia trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of β-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active β-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by complementation.

          Author Summary

          C. trachomatis is a major human pathogen for which there is no means of genetically manipulating its DNA. It is an obligate intracellular bacterium which has a complex developmental cycle that takes place in a specialized host cell cytoplasmic vacuole known as an inclusion. We have constructed a shuttle vector based on the chlamydial plasmid and developed a new approach to select genetically modified bacteria. It uses rescue by selection of stable infectious, penicillin-resistant C. trachomatis from a pool of non-dividing, non-infectious C. trachomatis (induced by penicillin arrest of the developmental cycle). The transformed C. trachomatis is also cured of its endogenous plasmid by the selection of the transforming vector. The vector was modified to express the green fluorescent protein (GFP) in both Chlamydia and E. coli. We have genetically manipulated a plasmid-free recipient strain of C. trachomatis and shown restoration of the ability of this recipient strain to synthesize and accumulate glycogen within inclusions upon acquisition of the shuttle vector. The ability to transform and manipulate C. trachomatis using a complementation based vector is an important advance that opens up the field of Chlamydia research.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Book: not found

          Molecular Cloning : A Laboratory Manual

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis.

            Analysis of the 1,042,519-base pair Chlamydia trachomatis genome revealed unexpected features related to the complex biology of chlamydiae. Although chlamydiae lack many biosynthetic capabilities, they retain functions for performing key steps and interconversions of metabolites obtained from their mammalian host cells. Numerous potential virulence-associated proteins also were characterized. Several eukaryotic chromatin-associated domain proteins were identified, suggesting a eukaryotic-like mechanism for chlamydial nucleoid condensation and decondensation. The phylogenetic mosaic of chlamydial genes, including a large number of genes with phylogenetic origins from eukaryotes, implies a complex evolution for adaptation to obligate intracellular parasitism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sexually transmitted diseases treatment guidelines, 2010.

              These guidelines for the treatment of persons who have or are at risk for sexually transmitted diseases (STDs) were updated by CDC after consultation with a group of professionals knowledgeable in the field of STDs who met in Atlanta on April 18-30, 2009. The information in this report updates the 2006 Guidelines for Treatment of Sexually Transmitted Diseases (MMWR 2006;55[No. RR-11]). Included in these updated guidelines is new information regarding 1) the expanded diagnostic evaluation for cervicitis and trichomoniasis; 2) new treatment recommendations for bacterial vaginosis and genital warts; 3) the clinical efficacy of azithromycin for chlamydial infections in pregnancy; 4) the role of Mycoplasma genitalium and trichomoniasis in urethritis/cervicitis and treatment-related implications; 5) lymphogranuloma venereum proctocolitis among men who have sex with men; 6) the criteria for spinal fluid examination to evaluate for neurosyphilis; 7) the emergence of azithromycin-resistant Treponema pallidum; 8) the increasing prevalence of antimicrobial-resistant Neisseria gonorrhoeae; 9) the sexual transmission of hepatitis C; 10) diagnostic evaluation after sexual assault; and 11) STD prevention approaches.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2011
                September 2011
                22 September 2011
                : 7
                : 9
                : e1002258
                Affiliations
                [1 ]Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
                [2 ]Department of Virology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
                Duke University, United States of America
                Author notes

                Conceived and designed the experiments: YW SK PRL INC. Performed the experiments: YW SK LTC RJS INC. Analyzed the data: YW SK RJS PRL INC. Contributed reagents/materials/analysis tools: SK INC. Wrote the paper: YW SK LTC RJS PRL INC.

                Article
                PPATHOGENS-D-11-00473
                10.1371/journal.ppat.1002258
                3178582
                21966270
                edbfd6e3-4e44-4c59-8c2c-b8bf7a4ff1a1
                Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 March 2011
                : 26 July 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Microbiology
                Model Organisms
                Medicine
                Infectious Diseases
                Sexually Transmitted Diseases
                Chlamydia
                Bacterial Diseases
                Gynecologic Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content7

                Cited by158

                Most referenced authors663