43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long non-coding RNAs in the regulation of myeloid cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long non-coding RNAs (lncRNAs) have been attracting immense research interests. The relevance of lncRNAs in biological and physiological as well as in pathological processes has increased along with the understanding of their various regulatory mechanisms. Abundant studies have indicated that lncRNAs are involved in the differentiation, proliferation, activation, and initiation of apoptosis in different cell types. However, most studies about the regulating biology of lncRNAs are currently focused on cancer cells. This review is focused on the widely unexplored role of lncRNAs in the cell fate of myeloid cells. In this review, we summarize recent studies that have confirmed lncRNAs to be essential in the development of myeloid cells under normal and pathological conditions.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Functions of lncRNA HOTAIR in lung cancer

          Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular processes. lncRNA HOX transcript antisense RNA (HOTAIR) represses gene expression through recruitment of chromatin modifiers. The expression of HOTAIR is elevated in lung cancer and correlates with metastasis and poor prognosis. Moreover, HOTAIR promotes proliferation, survival, invasion, metastasis, and drug resistance in lung cancer cells. Here we review the molecular mechanisms underlying HOTAIR-mediated aggressive phenotypes of lung cancer. We also discuss HOTAIR’s potential in diagnosis and treatment of lung cancer, as well as the challenges of exploiting HOTAIR for intervention of lung cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells

            Background Acute promyelocytic leukemia (APL) is characterized by the reciprocal translocation t(15;17), which fuses PML with retinoic acid receptor alpha (RARα). Although PML-RARα is crucially important for pathogenesis and responsiveness to treatment, the molecular and cellular mechanisms by which PML-RARα exerts its oncogenic potential have not been fully elucidated. Recent reports have suggested that long non-coding RNAs (lncRNAs) contribute to the precise control of gene expression and are involved in human diseases. Little is known about the role of lncRNA in APL. Methods We analyzed NEAT1 expression in APL samples and cell lines by real-time quantitative reverse transcription-PCR (qRT-PCR). The expression of PML-RARα was measured by Western blot. Cell differentiation was assessed by measuring the surface CD11b antigen expression by flow cytometry analysis. Results We found that nuclear enriched abundant transcript 1 (NEAT1), a lncRNA essential for the formation of nuclear body paraspeckles, is significantly repressed in de novo APL samples compared with those of healthy donors. We further provide evidence that NEAT1 expression was repressed by PML-RARα. Furthermore, significant NEAT1 upregulation was observed during all-trans retinoic acid (ATRA)-induced NB4 cell differentiation. Finally, we demonstrate the importance of NEAT1 in myeloid differentiation. We show that reduction of NEAT1 by small interfering RNA (siRNA) blocks ATRA-induced differentiation. Conclusions Our results indicate that reduced expression of the nuclear long noncoding RNA NEAT1 may play a role in the myeloid differentiation of APL cells. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-693) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells.

              HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level.
                Bookmark

                Author and article information

                Contributors
                86-511-8503-8301 , sjwjs@ujs.edu.cn
                Journal
                J Hematol Oncol
                J Hematol Oncol
                Journal of Hematology & Oncology
                BioMed Central (London )
                1756-8722
                29 September 2016
                29 September 2016
                2016
                : 9
                : 99
                Affiliations
                [1 ]Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University, Zhenjiang, 212002 China
                [2 ]Institute of Laboratory Medicine, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013 China
                Article
                333
                10.1186/s13045-016-0333-7
                5041333
                27680332
                edaf53d6-05b5-47ea-bf7b-db791edaa425
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 July 2016
                : 22 September 2016
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                Oncology & Radiotherapy
                long non-coding rnas,erythrocytes and megakaryocytes,granulocytes,monocytes and macrophages,cell development

                Comments

                Comment on this article