2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced oral bioavailability and anticancer efficacy of fisetin by encapsulating as inclusion complex with HPβCD in polymeric nanoparticles

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fisetin (FST), a potent anticancer phytoconstituent, exhibits poor aqueous solubility and hence poor bioavailability. The aim of the present study is to improve the oral bioavailability of FST by encapsulating into PLGA NPs (poly-lactide-co-glycolic acid nanoparticles) as a complex of HPβCD (hydroxyl propyl beta cyclodextrin) and to assess its anti-cancer activity against breast cancer cells. FST-HPβCD inclusion complex (FHIC) was prepared and the supramolecular complex formation was characterized by FTIR, DSC, PXRD and 1H NMR. FHIC encapsulated PLGA nanoparticles (FHIC-PNP) were prepared and were studied for in vitro anticancer activity, cellular uptake, apoptosis and reactive oxygen species generation in MCF-7 human breast cancer cells. Comparative bioavailability of FST was determined after oral administration in C57BL6 mice as pure FST and FHIC-PNP. The results revealed that FHIC-PNP not only enhanced the anti-cancer activity and apoptosis of FST against MCF-7 cells but also improved its oral bioavailability, as demonstrated by increased peak plasma concentration and total drug absorbed.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery.

          Nanoparticle (NP) size has been shown to significantly affect the biodistribution of targeted and non-targeted NPs in an organ specific manner. Herein we have developed NPs from carboxy-terminated poly(d,L-lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG-COOH) polymer and studied the effects of altering the following formulation parameters on the size of NPs: (1) polymer concentration, (2) drug loading, (3) water miscibility of solvent, and (4) the ratio of water to solvent. We found that NP mean volumetric size correlates linearly with polymer concentration for NPs between 70 and 250 nm in diameter (linear coefficient=0.99 for NPs formulated with solvents studied). NPs with desirable size, drug loading, and polydispersity were conjugated to the A10 RNA aptamer (Apt) that binds to the prostate specific membrane antigen (PSMA), and NP and NP-Apt biodistribution was evaluated in a LNCaP (PSMA+) xenograft mouse model of prostate cancer. The surface functionalization of NPs with the A10 PSMA Apt significantly enhanced delivery of NPs to tumors vs. equivalent NPs lacking the A10 PSMA Apt (a 3.77-fold increase at 24h; NP-Apt 0.83%+/-0.21% vs. NP 0.22%+/-0.07% of injected dose per gram of tissue; mean+/-SD, n=4, p=0.002). The ability to control NP size together with targeted delivery may result in favorable biodistribution and development of clinically relevant targeted therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanoparticles: Emerging carriers for drug delivery.

            The core objective of nanoparticles is to control and manipulate biomacromolecular constructs and supramolecular assemblies that are critical to living cells in order to improve the quality of human health. By definition, these constructs and assemblies are nanoscale and include entities such as drugs, proteins, DNA/RNA, viruses, cellular lipid bilayers, cellular receptor sites and antibody variable regions critical for immunology and are involved in events of nanoscale proportions. The emergence of such nanotherapeutics/diagnostics will allow a deeper understanding of human longevity and human ills that include cancer, cardiovascular disease and genetic disorders. A technology platform that provides a wide range of synthetic nanostructures that may be controlled as a function of size, shape and surface chemistry and scale to these nanotechnical dimensions will be a critical first step in developing appropriate tools and a scientific basis for understanding nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways.

              Overexpression of cyclooxygenase 2 (COX2) and uncontrolled wingless and Int (Wnt)-signaling pathway have long been suggested to play crucial roles in colorectal cancer. Studies show that selective COX2 inhibitors possess great potential as chemopreventive agents for colon cancer. Recent studies suggest that targeting COX2 and epidermal growth factor receptor (EGFR) may provide better therapeutic strategy than inhibiting either single target and that this may alleviate the problem of COX2 inhibitor-associated side effects. Therefore, there have been intensive efforts to develop novel dietary substances that target COX2 and EGFR activation. Fisetin is a naturally occurring flavonoid commonly found in various vegetables and fruits. We found that the treatment of COX2-overexpressing HT29 human colon cancer cells with fisetin (30-120 microM) resulted in induction of apoptosis, downregulation of COX2 protein expression without affecting COX1 and inhibited the secretion of prostaglandin E2. Treatment of cells with fisetin also inhibited Wnt-signaling activity through downregulation of beta-catenin and T cell factor 4 and decreased the expression of target genes such as cyclin D1 and matrix metalloproteinase 7. Fisetin treatment of cells also inhibited the activation of EGFR and nuclear factor-kappa B (NF-kappaB). Finally, the formation of colonies in soft agar was suppressed by fisetin treatment. Taken together, we provide evidence that the plant flavonoid fisetin can induce apoptosis and suppress the growth of colon cancer cells by inhibition of COX2- and Wnt/EGFR/NF-kappaB-signaling pathways. We suggest that fisetin could be a useful agent for prevention and treatment of colon cancer.
                Bookmark

                Author and article information

                Journal
                Drug Deliv
                Drug Deliv
                Drug Delivery
                Taylor & Francis
                1071-7544
                1521-0464
                3 February 2017
                2017
                : 24
                : 1
                : 224-232
                Affiliations
                [1 ]Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology , Hyderabad, India,
                [2 ]National Centre for Mass Spectrometry, Indian Institute of Chemical Technology , Hyderabad, India, and
                [3 ]Department of Pharmaceutical Sciences, A.U. College of Pharmaceutical Sciences, Andhra University , Visakhapatnam, India
                Author notes
                Address for correspondence: Ramakrishna Sistla, Medicinal Chemistry & Pharmacology Division, CSIR-Indian Institute of Chemical Technology , Hyderabad, Telangana 500007, India. Email: sistla@ 123456iict.res.in
                Article
                1245366
                10.1080/10717544.2016.1245366
                8241160
                28156161
                ed9e9a59-7660-4549-a389-7e6e10e2ae96
                © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/Licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 6, Pages: 9
                Categories
                Research Article
                Research Article

                Pharmacology & Pharmaceutical medicine
                fisetin,hyroxypropyl β-cyclodextrin,inclusion complex,plga nanoparticles,anticancer activity,oral bioavailability

                Comments

                Comment on this article