Fermentation of sugars to the so-called ABE mixture delivers a three component mixture of shorter chain oxygenates: acetone, n-butanol and ethanol. In order to convert these into liquid transportation fuels that are analogous to the currently used fossil energy carriers, novel catalytic chain elongation methods involving C–C bond formation are desired. Herein we report on a simple, non-noble-metal-based method for the highly selective coupling of 1-butanol and acetone into high molecular weight (C7–C11) ketones, as well as ABE mixtures into (C5–C11) ketones using the solid base Mg–Al–PMO in combination with small amount of Raney nickel. Upon hydrodeoxygenation, these ketones are converted to fuel range alkanes with excellent carbon utilization (up to 89%) using Earth abundant metal containing catalysis.
Selective coupling of ABE mixture to chain elongated aliphatic ketones and their conversion into transportation fuel range alkanes is discussed.