21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      OncoTargets and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the pathological basis of cancers, potential targets for therapy and treatment protocols to improve the management of cancer patients. Publishing high-quality, original research on molecular aspects of cancer, including the molecular diagnosis, since 2008. Sign up for email alerts here. 50,877 Monthly downloads/views I 4.345 Impact Factor I 7.0 CiteScore I 0.81 Source Normalized Impact per Paper (SNIP) I 0.811 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA DLX6-AS1 promotes the proliferation, invasion, and migration of non-small cell lung cancer cells by targeting the miR-27b-3p/ GSPT1 axis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Non-small cell lung cancer (NSCLC) has a significant impact on human health. The aim of this study was to explore the role of long non-coding RNA DLX6-AS1 in the proliferation, migration, and invasion of NSCLC cells.

          Methods: The expression of DLX6-AS1 in NSCLC tumor tissues and cell lines was examined by qRT-PCR. The effects of DLX6-AS1 knockdown on cell proliferation, migration, and invasion were assessed by Cell Counting Kit-8, wound healing, and transwell assays, respectively. Bioinformatics analyses, luciferase reporter assays, and RNA pull-down assays were employed to examine the mechanism by which DLX6-AS1 exerted its oncogenesis effects in NSCLC. The anti-tumor effect of silencing DLX6-AS1 in vivo was also evaluated.

          Results: DLX6-AS1 was over-expressed in NSCLC tumor tissues and cell lines and its level of expression was found to be associated with tumor size and advanced clinical stage in patients with NSCLC. Downregulation of DLX6-AS1 inhibited cell proliferation, cell clone formation, migration, and invasion of NSCLC cells. DLX6-AS1 was found to interact with miR-27b-3p/ GSPT1. DLX6-AS1 expression was negatively correlated with miR-27b-3p expression, but positively correlated with GSPT1 expression in NSCLC samples. DLX6-AS1 knockdown also effectively suppressed tumor growth in an in vivo xenograft model.

          Conclusion: DLX6-AS1 regulated NSCLC progression by targeting the miR-27b-3p/ GSPT1 axis, which may provide novel insights for NSCLC prognosis and therapy.

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          Ki67 targeted strategies for cancer therapy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells

            Drug resistance remains a major problem in the treatment of conventional chemotherapeutic agents in breast cancers. Owing to heterogeneity and complexity of chemoresistance mechanisms, most efforts that focus on a single pathway were unsuccessful, and exploring novel personalized therapeutics becomes urgent. By a system approach, we identified that microRNA-27b-3p (miR-27b), a miRNA deleted in breast cancer tissues and cell lines, has a master role in sensitizing breast cancer cells to a broad spectrum of anticancer drugs in vitro and in vivo. Mechanistic analysis indicated that miR-27b enhanced responses to PTX by directly targeting CBLB and GRB2 to inactivate both PI3K/Akt and MAPK/Erk signaling pathways. Further, miR-27b was identified as a promising molecular biomarker in chemoresistance, clinicopathological features, and prognosis for breast cancer patients. In conclusion, we propose that combinational use of miR-27b and chemotherapeutic agents might be a promising therapeutic strategy to increase long-term drug responses in breast cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A Prognostic Model of Triple-Negative Breast Cancer Based on miR-27b-3p and Node Status

              Objective Triple-negative breast cancer (TNBC) is an aggressive but heterogeneous subtype of breast cancer. This study aimed to identify and validate a prognostic signature for TNBC patients to improve prognostic capability and to guide individualized treatment. Methods We retrospectively analyzed the prognostic performance of clinicopathological characteristics and miRNAs in a training set of 58 patients with invasive ductal TNBC diagnosed between 2002 and 2012. A prediction model was developed based on independent clinicopathological and miRNA covariates. The prognostic value of the model was further validated in a separate set of 41 TNBC patients diagnosed between 2007 and 2008. Results Only lymph node status was marginally significantly associated with poor prognosis of TNBC (P = 0.054), whereas other clinicopathological factors, including age, tumor size, histological grade, lymphovascular invasion, P53 status, Ki-67 index, and type of surgery, were not. The expression levels of miR-27b-3p, miR-107, and miR-103a-3p were significantly elevated in the metastatic group compared with the disease-free group (P value: 0.008, 0.005, and 0.050, respectively). The Cox proportional hazards regression analysis revealed that lymph node status and miR-27b-3p were independent predictors of poor prognosis (P value: 0.012 and 0.027, respectively). A logistic regression model was developed based on these two independent covariates, and the prognostic value of the model was subsequently confirmed in a separate validation set. The two different risk groups, which were stratified according to the model, showed significant differences in the rates of distant metastasis and breast cancer-related death not only in the training set (P value: 0.001 and 0.040, respectively) but also in the validation set (P value: 0.013 and 0.012, respectively). Conclusion This model based on miRNA and node status covariates may be used to stratify TNBC patients into different prognostic subgroups for potentially individualized therapy.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OTT
                ott
                OncoTargets and therapy
                Dove
                1178-6930
                22 May 2019
                2019
                : 12
                : 3945-3954
                Affiliations
                [1 ]Teaching Administration Office, Affiliated Hospital of Jining Medical University , Jining, People’s Republic of China
                [2 ]Intensive Care Unit, Affiliated Hospital of Jining Medical University , Jining, People’s Republic of China
                [3 ]Nursing Department, Affiliated Hospital of Jining Medical University , Jining, People’s Republic of China
                Author notes
                Correspondence: Xiangli MengNursing Department, Affiliated Hospital of Jining Medical University , No 89 Guhuai Road, Jining, People’s Republic of ChinaEmail mengbeike71@ 123456126.com
                Article
                196865
                10.2147/OTT.S196865
                6535439
                31190891
                ed8cc160-2e34-4cd4-9a65-a6413cf06d4d
                © 2019 Sun et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 03 December 2018
                : 12 March 2019
                Page count
                Figures: 5, Tables: 1, References: 25, Pages: 10
                Categories
                Original Research

                Oncology & Radiotherapy
                dlx6-as1,nsclc,mir-27b-3p,gspt1,invasion
                Oncology & Radiotherapy
                dlx6-as1, nsclc, mir-27b-3p, gspt1, invasion

                Comments

                Comment on this article