4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparing Racial Differences in Emphysema Prevalence Among Adults With Normal Spirometry: A Secondary Data Analysis of the CARDIA Lung Study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations.

          The aim of the Task Force was to derive continuous prediction equations and their lower limits of normal for spirometric indices, which are applicable globally. Over 160,000 data points from 72 centres in 33 countries were shared with the European Respiratory Society Global Lung Function Initiative. Eliminating data that could not be used (mostly missing ethnic group, some outliers) left 97,759 records of healthy nonsmokers (55.3% females) aged 2.5-95 yrs. Lung function data were collated and prediction equations derived using the LMS method, which allows simultaneous modelling of the mean (mu), the coefficient of variation (sigma) and skewness (lambda) of a distribution family. After discarding 23,572 records, mostly because they could not be combined with other ethnic or geographic groups, reference equations were derived for healthy individuals aged 3-95 yrs for Caucasians (n=57,395), African-Americans (n=3,545), and North (n=4,992) and South East Asians (n=8,255). Forced expiratory value in 1 s (FEV(1)) and forced vital capacity (FVC) between ethnic groups differed proportionally from that in Caucasians, such that FEV(1)/FVC remained virtually independent of ethnic group. For individuals not represented by these four groups, or of mixed ethnic origins, a composite equation taken as the average of the above equations is provided to facilitate interpretation until a more appropriate solution is developed. Spirometric prediction equations for the 3-95-age range are now available that include appropriate age-dependent lower limits of normal. They can be applied globally to different ethnic groups. Additional data from the Indian subcontinent and Arabic, Polynesian and Latin American countries, as well as Africa will further improve these equations in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spirometric reference values from a sample of the general U.S. population.

            Spirometric reference values for Caucasians, African-Americans, and Mexican-Americans 8 to 80 yr of age were developed from 7,429 asymptomatic, lifelong nonsmoking participants in the third National Health and Nutrition Examination Survey (NHANES III). Spirometry examinations followed the 1987 American Thoracic Society recommendations, and the quality of the data was continuously monitored and maintained. Caucasian subjects had higher mean FVC and FEV1 values than did Mexican-American and African-American subjects across the entire age range. However, Caucasian and Mexican-American subjects had similar FVC and FEV1 values with respect to height, and African-American subjects had lower values. These differences may be partially due to differences in body build: observed Mexican-Americans were shorter than Caucasian subjects of the same age, and African-Americans on average have a smaller trunk:leg ratio than do Caucasians. Reference values and lower limits of normal were derived using a piecewise polynomial model with age and height as predictors. These reference values encompass a wide age range for three race/ethnic groups and should prove useful for diagnostic and research purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society.

              This guideline is an official statement of the American College of Physicians (ACP), American College of Chest Physicians (ACCP), American Thoracic Society (ATS), and European Respiratory Society (ERS). It represents an update of the 2007 ACP clinical practice guideline on diagnosis and management of stable chronic obstructive pulmonary disease (COPD) and is intended for clinicians who manage patients with COPD. This guideline addresses the value of history and physical examination for predicting airflow obstruction; the value of spirometry for screening or diagnosis of COPD; and COPD management strategies, specifically evaluation of various inhaled therapies (anticholinergics, long-acting β-agonists, and corticosteroids), pulmonary rehabilitation programs, and supplemental oxygen therapy. This guideline is based on a targeted literature update from March 2007 to December 2009 to evaluate the evidence and update the 2007 ACP clinical practice guideline on diagnosis and management of stable COPD. RECOMMENDATION 1: ACP, ACCP, ATS, and ERS recommend that spirometry should be obtained to diagnose airflow obstruction in patients with respiratory symptoms (Grade: strong recommendation, moderate-quality evidence). Spirometry should not be used to screen for airflow obstruction in individuals without respiratory symptoms (Grade: strong recommendation, moderate-quality evidence). RECOMMENDATION 2: For stable COPD patients with respiratory symptoms and FEV(1) between 60% and 80% predicted, ACP, ACCP, ATS, and ERS suggest that treatment with inhaled bronchodilators may be used (Grade: weak recommendation, low-quality evidence). RECOMMENDATION 3: For stable COPD patients with respiratory symptoms and FEV(1) 50% predicted. (Grade: weak recommendation, moderate-quality evidence). RECOMMENDATION 7: ACP, ACCP, ATS, and ERS recommend that clinicians should prescribe continuous oxygen therapy in patients with COPD who have severe resting hypoxemia (Pao(2) ≤55 mm Hg or Spo(2) ≤88%) (Grade: strong recommendation, moderate-quality evidence).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Annals of Internal Medicine
                Ann Intern Med
                American College of Physicians
                0003-4819
                1539-3704
                July 19 2022
                Affiliations
                [1 ]Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (G.Y.L., D.M., P.H.S.S.)
                [2 ]Division of Cardiology, Department of Medicine, and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (S.S.K.)
                [3 ]Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.A.C.)
                [4 ]Applied Chest Imaging Laboratory and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts (G.R.W.)
                [5 ]Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota (D.R.J.)
                [6 ]Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama (M.T.D.)
                [7 ]Division of Pulmonary and Critical Care Medicine, Department of Medicine, and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois (M.R.C., R.K.).
                Article
                10.7326/M22-0205
                35849828
                ed6cc01d-5628-4679-8360-7e56896f23c0
                © 2022
                History

                Comments

                Comment on this article