9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the Safety Profile of the ASFV Vaccine Candidate ASFV-G-ΔI177L

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          African swine fever (ASF) is the cause of a recent pandemic that is posing a threat to much of the world swine production. The etiological agent, ASF virus (ASFV), infects domestic and wild swine, producing a variety of clinical presentations depending on the virus strain and the genetic background of the pigs infected. No commercial vaccine is currently available, although recombinant live attenuated vaccine candidates have been shown to be efficacious. In addition to determining efficacy, it is paramount to evaluate the safety profile of a live attenuated vaccine. The presence of residual virulence and the possibility of reversion to virulence are two of the concerns that must be evaluated in the development of live attenuated vaccines. Here we evaluate the safety profile of an efficacious live attenuated vaccine candidate, ASFV-G-ΔI177L. Results from safety studies showed that ASFV-G-ΔI177L remains genetically stable and phenotypically attenuated during a five-passage reversion to virulence study in domestic swine. In addition, large-scale experiments to detect virus shedding and transmission confirmed that even under varying conditions, ASFV-G-ΔI177L is a safe live attenuated vaccine.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          African swine fever: how can global spread be prevented?

          African swine fever (ASF) is a devastating haemorrhagic fever of pigs with mortality rates approaching 100 per cent. It causes major economic losses, threatens food security and limits pig production in affected countries. ASF is caused by a large DNA virus, African swine fever virus (ASFV). There is no vaccine against ASFV and this limits the options for disease control. ASF has been confined mainly to sub-Saharan Africa, where it is maintained in a sylvatic cycle and/or among domestic pigs. Wildlife hosts include wild suids and arthropod vectors. The relatively small numbers of incursions to other continents have proven to be very difficult to eradicate. Thus, ASF remained endemic in the Iberian peninsula until the mid-1990s following its introductions in 1957 and 1960 and the disease has remained endemic in Sardinia since its introduction in 1982. ASF has continued to spread within Africa to previously uninfected countries, including recently the Indian Ocean islands of Madagascar and Mauritius. Given the continued occurrence of ASF in sub-Saharan Africa and increasing global movements of people and products, it is not surprising that further transcontinental transmission has occurred. The introduction of ASF to Georgia in the Caucasus in 2007 and dissemination to neighbouring countries emphasizes the global threat posed by ASF and further increases the risks to other countries. We review the mechanisms by which ASFV is maintained within wildlife and domestic pig populations and how it can be transmitted. We then consider the risks for global spread of ASFV and discuss possibilities of how disease can be prevented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain.

            African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The disease is devastating the swine industry in Central Europe and East Asia, with current outbreaks caused by circulating strains of ASFV derived from the 2007 Georgia isolate (ASFV-G), a genotype II ASFV. In the absence of any available vaccines, African Swine Fever (ASF) outbreak containment relies on control and culling of infected animals. Limited cross protection studies suggest that in order to ensure a vaccine is effective it must be derived from the current outbreak strain or at the very least from an isolate with the same genotype. Here we report the discovery that deletion of a previously uncharacterized gene, I177L, from the highly virulent ASFV-G produces complete virus attenuation in swine. Animals inoculated intramuscularly with the virus lacking the I177L gene, ASFV-G-ΔI177L, in a dose range of 10 2 to 10 6 HAD 50 remained clinically normal during the 28 day observational period. All ASFV-G-ΔI177L-infected animals had low viremia titers, showed no virus shedding, developed a strong virus-specific antibody response and, importantly, they were protected when challenged with the virulent parental strain ASFV-G. ASFV-G-ΔI177L is one of the few experimental vaccine candidate virus strains reported to be able to induce protection against the ASFV Georgia isolate, and the first vaccine capable of inducing sterile immunity against the current ASFV strain responsible for recent outbreaks. Importance: Currently there is no commercially available vaccine against African swine fever. Outbreaks of this disease are devastating the swine industry from Central Europe to East Asia, and they are being caused by circulating strains of African swine fever virus derived from the Georgia2007 isolate. Here we report the discovery of a previously uncharacterized virus gene, which when deleted completely attenuates the Georgia isolate. Importantly, animals infected with this genetically modified virus were protected from developing ASF after challenge with the virulent parental virus. Interestingly, ASFV-G-ΔI177L confers protection even at low doses (10 2 HAD 50 ) and remains completely attenuated when inoculated at high doses (10 6 HAD 50 ), demonstrating its potential as a safe vaccine candidate. At medium or higher doses (10 4 HAD 50 ) sterile immunity is achieved. Therefore, ASFV-G-ΔI177L is a novel efficacious experimental ASF vaccine protecting pigs from the epidemiologically relevant ASFV Georgia isolate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus.

              African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been developed using genetically modified live attenuated ASFVs where viral genes involved in virus virulence were removed from the genome. Multigene family 360 (MGF360) and MGF505 represent a group of genes sharing partial sequence and structural identities that have been connected with ASFV host range specificity, blocking of the host innate response, and virus virulence. Here we report the construction of a recombinant virus (ASFV-G-ΔMGF) derived from the highly virulent ASFV Georgia 2007 isolate (ASFV-G) by specifically deleting six genes belonging to MGF360 or MGF505: MGF505-1R, MGF360-12L, MGF360-13L, MGF360-14L, MGF505-2R, and MGF505-3R. ASFV-G-ΔMGF replicates as efficiently in primary swine macrophage cell cultures as the parental virus. In vivo, ASFV-G-ΔMGF is completely attenuated in swine, since pigs inoculated intramuscularly (i.m.) with either 10(2) or 10(4) 50% hemadsorbing doses (HAD50) remained healthy, without signs of the disease. Importantly, when these animals were subsequently exposed to highly virulent parental ASFV-G, no signs of the disease were observed, although a proportion of these animals harbored the challenge virus. This is the first report demonstrating the role of MGF genes acting as independent determinants of ASFV virulence. Additionally, ASFV-G-ΔMGF is the first experimental vaccine reported to induce protection in pigs challenged with highly virulent and epidemiologically relevant ASFV-G.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                May 2022
                April 25 2022
                : 14
                : 5
                : 896
                Article
                10.3390/v14050896
                35632638
                ed6327c5-0d48-41d0-adf4-e66e63d4b951
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article