25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Complex Role of Lactic Acid Bacteria in Food Detoxification

      , , , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Toxic ingredients in food can lead to serious food-related diseases. Such compounds are bacterial toxins (Shiga-toxin, listeriolysin, Botulinum toxin), mycotoxins (aflatoxin, ochratoxin, zearalenone, fumonisin), pesticides of different classes (organochlorine, organophosphate, synthetic pyrethroids), heavy metals, and natural antinutrients such as phytates, oxalates, and cyanide-generating glycosides. The generally regarded safe (GRAS) status and long history of lactic acid bacteria (LAB) as essential ingredients of fermented foods and probiotics make them a major biological tool against a great variety of food-related toxins. This state-of-the-art review aims to summarize and discuss the data revealing the involvement of LAB in the detoxification of foods from hazardous agents of microbial and chemical nature. It is focused on the specific properties that allow LAB to counteract toxins and destroy them, as well as on the mechanisms of microbial antagonism toward toxigenic producers. Toxins of microbial origin are either adsorbed or degraded, toxic chemicals are hydrolyzed and then used as a carbon source, while heavy metals are bound and accumulated. Based on these comprehensive data, the prospects for developing new combinations of probiotic starters for food detoxification are considered.

          Related collections

          Most cited references330

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Toxicity, mechanism and health effects of some heavy metals

          Heavy metal toxicity has proven to be a major threat and there are several health risks associated with it. The toxic effects of these metals, even though they do not have any biological role, remain present in some or the other form harmful for the human body and its proper functioning. They sometimes act as a pseudo element of the body while at certain times they may even interfere with metabolic processes. Few metals, such as aluminium, can be removed through elimination activities, while some metals get accumulated in the body and food chain, exhibiting a chronic nature. Various public health measures have been undertaken to control, prevent and treat metal toxicity occurring at various levels, such as occupational exposure, accidents and environmental factors. Metal toxicity depends upon the absorbed dose, the route of exposure and duration of exposure, i.e. acute or chronic. This can lead to various disorders and can also result in excessive damage due to oxidative stress induced by free radical formation. This review gives details about some heavy metals and their toxicity mechanisms, along with their health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Effects of Probiotics, Prebiotics, and Synbiotics on Human Health

            The human gastrointestinal tract is colonised by a complex ecosystem of microorganisms. Intestinal bacteria are not only commensal, but they also undergo a synbiotic co-evolution along with their host. Beneficial intestinal bacteria have numerous and important functions, e.g., they produce various nutrients for their host, prevent infections caused by intestinal pathogens, and modulate a normal immunological response. Therefore, modification of the intestinal microbiota in order to achieve, restore, and maintain favourable balance in the ecosystem, and the activity of microorganisms present in the gastrointestinal tract is necessary for the improved health condition of the host. The introduction of probiotics, prebiotics, or synbiotics into human diet is favourable for the intestinal microbiota. They may be consumed in the form of raw vegetables and fruit, fermented pickles, or dairy products. Another source may be pharmaceutical formulas and functional food. This paper provides a review of available information and summarises the current knowledge on the effects of probiotics, prebiotics, and synbiotics on human health. The mechanism of beneficial action of those substances is discussed, and verified study results proving their efficacy in human nutrition are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low-cost adsorbents for heavy metals uptake from contaminated water: a review.

              In this article, the technical feasibility of various low-cost adsorbents for heavy metal removal from contaminated water has been reviewed. Instead of using commercial activated carbon, researchers have worked on inexpensive materials, such as chitosan, zeolites, and other adsorbents, which have high adsorption capacity and are locally available. The results of their removal performance are compared to that of activated carbon and are presented in this study. It is evident from our literature survey of about 100 papers that low-cost adsorbents have demonstrated outstanding removal capabilities for certain metal ions as compared to activated carbon. Adsorbents that stand out for high adsorption capacities are chitosan (815, 273, 250 mg/g of Hg(2+), Cr(6+), and Cd(2+), respectively), zeolites (175 and 137 mg/g of Pb(2+) and Cd(2+), respectively), waste slurry (1030, 560, 540 mg/g of Pb(2+), Hg(2+), and Cr(6+), respectively), and lignin (1865 mg/g of Pb(2+)). These adsorbents are suitable for inorganic effluent treatment containing the metal ions mentioned previously. It is important to note that the adsorption capacities of the adsorbents presented in this paper vary, depending on the characteristics of the individual adsorbent, the extent of chemical modifications, and the concentration of adsorbate.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                May 2022
                May 12 2022
                : 14
                : 10
                : 2038
                Article
                10.3390/nu14102038
                9147554
                35631179
                ed459094-19a6-458e-b386-6e066380a171
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article