5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Artificial Intelligence-Enabled Assessment of the Heart Rate Corrected QT Interval Using a Mobile Electrocardiogram Device

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Heart rate-corrected QT interval (QTc) prolongation, whether secondary to drugs, genetics including congenital long QT syndrome (LQTS), and/or systemic diseases including SARS-CoV-2-mediated COVID19, can predispose to ventricular arrhythmias and sudden cardiac death. Currently, QTc assessment and monitoring relies largely on 12-lead electrocardiography. As such, we sought to train and validate an artificial intelligence (AI)-enabled 12-lead electrocardiogram (ECG) algorithm to determine the QTc, and then prospectively test this algorithm on tracings acquired from a mobile ECG (mECG) device in a population enriched for repolarization abnormalities.

          Methods: Using over 1.6 million 12-lead ECGs from 538,200 patients, a deep neural network (DNN) was derived (n = 250,767 patients for training and n = 107,920 patients for testing) and validated (n = 179,513 patients) to predict the QTc using cardiologist over-read QTc values as the gold standard. The ability of this DNN to detect clinically-relevant QTc prolongation (e.g. QTc ≥ 500 ms) was then tested prospectively on 686 genetic heart disease (GHD) patients (50% with LQTS) with QTc values obtained from both a 12-lead ECG and a prototype mECG device equivalent to the commercially-available AliveCor KardiaMobile 6L.

          Results: In the validation sample, strong agreement was observed between human over-read and DNN-predicted QTc values (-1.76 ± 23.14 ms). Similarly, within the prospective, GHD-enriched dataset, the difference between DNN-predicted QTc values derived from mECG tracings and those annotated from 12-lead ECGs by a QT expert (-0.45 ± 24.73 ms) and a commercial core ECG laboratory [+10.52 ms ± 25.64 ms] was nominal. When applied to mECG tracings, the DNN's ability to detect a QTc value ≥ 500 ms yielded an area under the curve, sensitivity, and specificity of 0.97, 80.0%, and 94.4%, respectively.

          Conclusions: Using smartphone-enabled electrodes, an AI-DNN can predict accurately the QTc of a standard 12-lead ECG. QTc estimation from an AI-enabled mECG device may provide a cost-effective means of screening for both acquired and congenital LQTS in a variety of clinical settings where standard 12-lead electrocardiography is not accessible or cost-effective.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Urgent Guidance for Navigating and Circumventing the QTc-Prolonging and Torsadogenic Potential of Possible Pharmacotherapies for Coronavirus Disease 19 (COVID-19)

              As the coronavirus disease 19 (COVID-19) global pandemic rages across the globe, the race to prevent and treat this deadly disease has led to the “off-label” repurposing of drugs such as hydroxychloroquine and lopinavir/ritonavir, which has the potential for unwanted QT-interval prolongation and a risk of drug-induced sudden cardiac death. With the possibility that a considerable proportion of the world’s population soon could receive COVID-19 pharmacotherapies with torsadogenic potential for therapy or postexposure prophylaxis, this document serves to help health care professionals mitigate the risk of drug-induced ventricular arrhythmias while minimizing risk of COVID-19 exposure to personnel and conserving the limited supply of personal protective equipment.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Circulation
                Circulation
                Ovid Technologies (Wolters Kluwer Health)
                0009-7322
                1524-4539
                February 2021
                Affiliations
                [1 ]Department of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN
                [2 ]AliveCor Inc., Mountain View, CA
                [3 ]Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
                [4 ]Department of Health Sciences Research (Biomedical Statistics and Informatics), Mayo Clinic, Jacksonville, FL
                [5 ]Department of Cardiovascular Medicine (Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN
                [6 ]eResearch Technology, Inc., Philadelphia, PA
                [7 ]Department of Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine (Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN; Department of Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), Mayo Clinic, Rochester, MN
                Article
                10.1161/CIRCULATIONAHA.120.050231
                33517677
                ed0e4e13-02ee-4c92-98ea-1db5350d4aab
                © 2021
                History

                Comments

                Comment on this article