8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BH3-only proteins Puma and Beclin1 regulate autophagic death in neurons in response to Amyloid-β

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer’s disease (AD) is characterized by accumulation of senile amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles causing progressive loss of synapse and neuronal death. Out of the various neuron death modalities, autophagy and apoptosis are reported to be the major death paradigms in AD. However, how these two processes lead to neuronal loss is still inconspicuous. Here we report that under Aβ toxicity, aberrant autophagy is induced with inefficient autophagic flux in neurons. Simultaneous activation of both autophagy and apoptosis are seen in primary cortical neurons as well as in transgenic mice brains. We found that induction of autophagy by rapamycin is detrimental for neurons; whereas downregulation of Beclin1, an important autophagy inducing protein, provides significant protection in Aβ treated neuronal cells by blocking cytochrome-c release from the mitochondria. We further report that downregulation of Puma, a BH3-only pro-apoptotic protein, inhibits the induction of aberrant autophagy and also ameliorates the autophagy flux under the influence of Aβ. Notably, stereotactic administration of shRNAs against Puma and Beclin1 in adult Aβ-infused rat brains inhibits both apoptotic and autophagic pathways. The regulation of both of the death processes is brought about by the direct interaction between Puma and Beclin1 upon Aβ treatment. We conclude that both Beclin1 and Puma play essential roles in the neuronal death caused by the induction of aberrant autophagy in AD and targeting their interaction could be vital to understand the crosstalk of autophagy and apoptosis as well as to develop a potential therapeutic strategy in AD.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics.

          It has been more than 10 years since it was first proposed that the neurodegeneration in Alzheimer's disease (AD) may be caused by deposition of amyloid beta-peptide (Abeta) in plaques in brain tissue. According to the amyloid hypothesis, accumulation of Abeta in the brain is the primary influence driving AD pathogenesis. The rest of the disease process, including formation of neurofibrillary tangles containing tau protein, is proposed to result from an imbalance between Abeta production and Abeta clearance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy in the pathogenesis of disease.

            Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development, and homeostasis. Autophagy principally serves an adaptive role to protect organisms against diverse pathologies, including infections, cancer, neurodegeneration, aging, and heart disease. However, in certain experimental disease settings, the self-cannibalistic or, paradoxically, even the prosurvival functions of autophagy may be deleterious. This Review summarizes recent advances in understanding the physiological functions of autophagy and its possible roles in the causation and prevention of human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alzheimer Disease: An Update on Pathobiology and Treatment Strategies

              Alzheimer disease (AD) is a heterogeneous disease with a complex pathobiology. The presence of extracellular amyloid-β deposition as neuritic plaques and intracellular accumulation of hyperphosphorylated tau as neurofibrillary tangles remain the primary neuropathologic criteria for AD diagnosis. However, a number of recent fundamental discoveries highlight important pathological roles for other critical cellular and molecular processes. Despite this, no disease modifying treatment currently exists and numerous phase 3 clinical trials have failed to demonstrate benefit. We review here recent advances in our understanding of AD pathobiology and discuss current treatment strategies, highlighting recent clinical trials and opportunities for developing future disease modifying therapies.
                Bookmark

                Author and article information

                Contributors
                biswassc@gmail.com
                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group UK (London )
                2058-7716
                15 November 2021
                15 November 2021
                2021
                : 7
                : 356
                Affiliations
                [1 ]GRID grid.417635.2, ISNI 0000 0001 2216 5074, Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, ; 4 Raja S. C. Mullick Road, Kolkata, 700 032 India
                [2 ]GRID grid.417969.4, ISNI 0000 0001 2315 1926, Present Address: Suraiya Saleem, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, ; IIT P.O., Chennai, 600 036 India
                [3 ]GRID grid.240684.c, ISNI 0000 0001 0705 3621, Present Address: Department of Neurological Sciences, , RUSH University Medical Center, ; Chicago, IL 60612 USA
                Author information
                http://orcid.org/0000-0002-1746-101X
                Article
                748
                10.1038/s41420-021-00748-x
                8593071
                34782612
                ecf79320-50a9-4c2f-af80-ce82e4ec7753
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 1 September 2021
                : 22 October 2021
                : 25 October 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001409, Department of Science and Technology, Ministry of Science and Technology (DST);
                Award ID: EMR/2016/003312
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                cell death in the nervous system,alzheimer's disease

                Comments

                Comment on this article