1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High‐Performance Synaptic Phototransistor Using A Photoactive Self‐Assembled Layer toward Ultralow Energy Consumption

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Artificial synapses have gained great interest in the past few years because of their importance in deep learning and image recognition. To fulfill device miniaturization and reduce the energy consumption of device operation, a series of silane‐based photoactive/conjugated self‐assembled molecules (CSAMs), including isoindigo (IID), diketopyrrolopyrrole, and benzodithiophene, are used as the charge‐trapping layers in synaptic phototransistors. The devices comprising CSAM demonstrate excellent short‐term/long‐term memory behaviors and can emulate the paired‐pulse facilitation (PPF) function. Notably, the IID‐based device shows the highest photoresponse, and this performance is highly related to the charge transfer efficiency and the photophysics lifetimes derived from the time‐resolved photoluminescence and the transient absorption characterizations. Therefore, IID produces the highest PPF ratios of 139% to blue light and 144% to green light. In addition, the energy consumption of 0.029 fJ at an operating voltage of −0.1 mV is achieved, which is the lowest value in synaptic phototransistors so far. Notably, neural networks of supervised and unsupervised learning algorithms are demonstrated in the device studied to process a pattern recognition system. Collectively, using conjugated self‐assembled materials as a charge‐trapping layer is a promising way for synaptic phototransistor applications to reduce energy consumption and fulfill the device miniaturization.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Short-term plasticity and long-term potentiation mimicked in single inorganic synapses.

          Memory is believed to occur in the human brain as a result of two types of synaptic plasticity: short-term plasticity (STP) and long-term potentiation (LTP; refs 1-4). In neuromorphic engineering, emulation of known neural behaviour has proven to be difficult to implement in software because of the highly complex interconnected nature of thought processes. Here we report the discovery of a Ag(2)S inorganic synapse, which emulates the synaptic functions of both STP and LTP characteristics through the use of input pulse repetition time. The structure known as an atomic switch, operating at critical voltages, stores information as STP with a spontaneous decay of conductance level in response to intermittent input stimuli, whereas frequent stimulation results in a transition to LTP. The Ag(2)S inorganic synapse has interesting characteristics with analogies to an individual biological synapse, and achieves dynamic memorization in a single device without the need of external preprogramming. A psychological model related to the process of memorizing and forgetting is also demonstrated using the inorganic synapses. Our Ag(2)S element indicates a breakthrough in mimicking synaptic behaviour essential for the further creation of artificial neural systems that emulate characteristics of human memory.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultralow-power organic complementary circuits.

            The prospect of using low-temperature processable organic semiconductors to implement transistors, circuits, displays and sensors on arbitrary substrates, such as glass or plastics, offers enormous potential for a wide range of electronic products. Of particular interest are portable devices that can be powered by small batteries or by near-field radio-frequency coupling. The main problem with existing approaches is the large power consumption of conventional organic circuits, which makes battery-powered applications problematic, if not impossible. Here we demonstrate an organic circuit with very low power consumption that uses a self-assembled monolayer gate dielectric and two different air-stable molecular semiconductors (pentacene and hexadecafluorocopperphthalocyanine, F16CuPc). The monolayer dielectric is grown on patterned metal gates at room temperature and is optimized to provide a large gate capacitance and low gate leakage currents. By combining low-voltage p-channel and n-channel organic thin-film transistors in a complementary circuit design, the static currents are reduced to below 100 pA per logic gate. We have fabricated complementary inverters, NAND gates, and ring oscillators that operate with supply voltages between 1.5 and 3 V and have a static power consumption of less than 1 nW per logic gate. These organic circuits are thus well suited for battery-powered systems such as portable display devices and large-surface sensor networks as well as for radio-frequency identification tags with extended operating range.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Short-term memory to long-term memory transition in a nanoscale memristor.

              "Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Advanced Optical Materials
                Advanced Optical Materials
                Wiley
                2195-1071
                2195-1071
                September 29 2023
                Affiliations
                [1 ] Department of Chemical Engineering National Taiwan University Taipei 10617 Taiwan
                [2 ] Advanced Research Center of Green Materials Science and Technology National Taiwan University Taipei 10617 Taiwan
                [3 ] National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan
                [4 ] Department of Materials Science and Engineering National Taiwan University Taipei 10617 Taiwan
                [5 ] Department of Chemical Engineering National Cheng Kung University Tainan City 70101 Taiwan
                Article
                10.1002/adom.202302040
                ecf639fb-5304-49a6-9d7b-ced73ac32369
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article