49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emergence of brown tides caused by Aureococcus anophagefferens Hargraves et Sieburth in China

      , , , , , , ,
      Harmful Algae
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton.

          Phylogenetic information from ribosomal RNA genes directly amplified from the environment changed our view of the biosphere, revealing an extraordinary diversity of previously undetected prokaryotic lineages. Using ribosomal RNA genes from marine picoplankton, several new groups of bacteria and archaea have been identified, some of which are abundant. Little is known, however, about the diversity of the smallest planktonic eukaryotes, and available information in general concerns the phytoplankton of the euphotic region. Here we recover eukaryotes in the size fraction 0.2-5 microm from the aphotic zone (250-3,000 m deep) in the Antarctic polar front. The most diverse and relatively abundant were two new groups of alveolate sequences, related to dinoflagellates that are found at all studied depths. These may be important components of the microbial community in the deep ocean. Their phylogenetic position suggests a radiation early in the evolution of alveolates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing.

            Very small eukaryotic organisms (picoeukaryotes) are fundamental components of marine planktonic systems, often accounting for a significant fraction of the biomass and activity in a system. Their identity, however, has remained elusive, since the small cells lack morphological features for identification. We determined the diversity of marine picoeukaryotes by sequencing cloned 18S rRNA genes in five genetic libraries from North Atlantic, Southern Ocean, and Mediterranean Sea surface waters. Picoplankton were obtained by filter size fractionation, a step that excluded most large eukaryotes and recovered most picoeukaryotes. Genetic libraries of eukaryotic ribosomal DNA were screened by restriction fragment length polymorphism analysis, and at least one clone of each operational taxonomic unit (OTU) was partially sequenced. In general, the phylogenetic diversity in each library was rather great, and each library included many different OTUs and members of very distantly related phylogenetic groups. Of 225 eukaryotic clones, 126 were affiliated with algal classes, especially the Prasinophyceae, the Prymnesiophyceae, the Bacillariophyceae, and the Dinophyceae. A minor fraction (27 clones) was affiliated with clearly heterotrophic organisms, such as ciliates, the chrysomonad Paraphysomonas, cercomonads, and fungi. There were two relatively abundant novel lineages, novel stramenopiles (53 clones) and novel alveolates (19 clones). These lineages are very different from any organism that has been isolated, suggesting that there are previously unknown picoeukaryotes. Prasinophytes and novel stramenopile clones were very abundant in all of the libraries analyzed. These findings underscore the importance of attempts to grow the small eukaryotic plankton in pure culture.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis

                Bookmark

                Author and article information

                Journal
                Harmful Algae
                Harmful Algae
                Elsevier BV
                15689883
                September 2012
                September 2012
                : 19
                :
                : 117-124
                Article
                10.1016/j.hal.2012.06.007
                ecee43d2-fff3-4cfd-9b55-51aeca9cdcfd
                © 2012

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content4,787

                Cited by28

                Most referenced authors281