Antibiotics target energy-consuming processes. As such, perturbations to bacterial metabolic homeostasis are significant consequences of treatment. Here, we describe three postulates that collectively define antibiotic efficacy in the context of bacterial metabolism: (1) antibiotics alter the metabolic state of bacteria, which contributes to the resulting death or stasis; (2) the metabolic state of bacteria influences their susceptibility to antibiotics; and (3) antibiotic efficacy can be enhanced by altering the metabolic state of bacteria. Altogether, we aim to emphasize the close relationship between bacterial metabolism and antibiotic efficacy as well as propose areas of exploration to develop novel antibiotics that optimally exploit bacterial metabolic networks.
The metabolic state of bacteria significantly contributes to the efficacy of antibiotics. In this Perspective, Stokes et al. highlight the close relationship between bacterial cell metabolism and antibiotic efficacy, leveraging prior observations to describe areas for further exploration, with the goal of developing next-generation antibiotics that can optimally exploit the complex metabolic networks of bacteria.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.