To investigate the maternal plane of nutrition and role of Se yeast on foaling variables and passive transfer of IgG, 28 Quarter Horse mares were used in a study with a randomized complete block design. Mares were blocked by expected foaling date and assigned randomly within block to dietary treatments. Dietary treatments were arranged as a 2 x 2 factorial with 2 planes of nutrition, pasture or pasture + grain mix (fed at 0.75% of BW on an as-fed basis) and 2 concentrations of Se yeast (0 or 0.3 mg/kg of DMI). This resulted in 4 treatments: pasture (PA), pasture + Se (PS), pasture + grain mix (PG), and pasture + grain mix + Se (PGS). Assuming DMI at 2% of BW, the mares fed PA and PS received approximately 100% of the calculated NRC (2007) DE requirements, whereas PG and PGS received 120%. Selenium supplementation began 110 d before the estimated foaling date, and all dietary treatments were terminated at parturition. At parturition, foaling variables were recorded. Additionally, placental weight was recorded and 2 samples from each placenta were collected for analysis of DNA, RNA, and protein. Colostrum was obtained for fat, protein, milk urea N, somatic cell count, and IgG analyses. Foal blood samples were collected at 0, 6, 12, 18, and 24 h after parturition for IgG analysis. There was no effect (P >or= 0.21) of Se or plane of nutrition on foaling variables; however, foal BW as a percentage of mare BW tended (P = 0.10) to be reduced in foals from mares on grain mix (PG and PGS; 7.6%) compared with mares not fed grain mix (PA and PS; 8.0%). There was also no effect (P >or= 0.20) of Se or plane of nutrition on placental cell number (mg of DNA/g), potential cellular activity (RNA:DNA), expulsion time, or weight. However, mares fed supplemental Se (PS and PGS) had decreased (P = 0.02) placental cell size (24.1 mg of protein/mg of DNA) compared with mares not fed supplemental Se (PA and PG; 32.5 mg of protein/mg of DNA). There was also no effect (P >or= 0.18) of Se or plane of nutrition on colostral fat, protein, milk urea N, or somatic cell count. However, mares fed grain mix (PG and PGS) had less (P = 0.03) colostral IgG (76.5 g/L) compared with mares not fed grain mix (PA and PS; 126.6 g/L). Foals from mares fed grain (PG and PGS) tended (P = 0.06) to have less overall serum IgG (13.6 g/L) compared with foals from mares not fed grain (PA and PS; 15.3 g/L). These data indicate that the maternal diet during the last one-third of gestation affects placental efficiency and colostral IgG.