29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hepatic Stearoyl-CoA Desaturase (SCD)-1 Activity and Diacylglycerol but Not Ceramide Concentrations Are Increased in the Nonalcoholic Human Fatty Liver

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE—To determine whether 1) hepatic ceramide and diacylglycerol concentrations, 2) SCD1 activity, and 3) hepatic lipogenic index are increased in the human nonalcoholic fatty liver.

          RESEARCH DESIGN AND METHODS—We studied 16 subjects with ( n = 8) and without ( n = 8) histologically determined nonalcoholic fatty liver (NAFL + and NAFL ) matched for age, sex, and BMI. Hepatic concentrations of lipids and fatty acids were quantitated using ultra-performance liquid chromatography coupled to mass spectrometry and gas chromatography.

          RESULTS—The absolute (nmol/mg) hepatic concentrations of diacylglycerols but not ceramides were increased in the NAFL + group compared with the NAFL group. The livers of the NAFL + group contained proportionally less long-chain polyunsaturated fatty acids as compared with the NAFL group. Liver fat percent was positively related to hepatic stearoyl-CoA desaturase 1 (SCD1) activity index ( r = 0.70, P = 0.003) and the hepatic lipogenic index ( r = 0.54, P = 0.030). Hepatic SCD1 activity index was positively related to the concentrations of diacylglycerols ( r = 0.71, P = 0.002) but not ceramides ( r = 0.07, NS).

          CONCLUSIONS—We conclude that diacylglycerols but not ceramides are increased in NAFL. The human fatty liver is also characterized by depletion of long polyunsaturated fatty acids in the liver and increases in hepatic SCD1 and lipogenic activities.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases.

          Fatty acid desaturases introduce a double bond in a specific position of long-chain fatty acids, and are conserved across kingdoms. Degree of unsaturation of fatty acids affects physical properties of membrane phospholipids and stored triglycerides. In addition, metabolites of polyunsaturated fatty acids are used as signaling molecules in many organisms. Three desaturases, Delta9, Delta6, and Delta5, are present in humans. Delta-9 catalyzes synthesis of monounsaturated fatty acids. Oleic acid, a main product of Delta9 desaturase, is the major fatty acid in mammalian adipose triglycerides, and is also used for phospholipid and cholesteryl ester synthesis. Delta-6 and Delta5 desaturases are required for the synthesis of highly unsaturated fatty acids (HUFAs), which are mainly esterified into phospholipids and contribute to maintaining membrane fluidity. While HUFAs may be required for cold tolerance in plants and fish, the primary role of HUFAs in mammals is cell signaling. Arachidonic acid is required as substrates for eicosanoid synthesis, while docosahexaenoic acid is required in visual and neuronal functions. Desaturases in mammals are regulated at the transcriptional level. Reflecting overlapping functions, three desaturases share a common mechanism of a feedback regulation to maintain products in membrane phospholipids. At the same time, regulation of Delta9 desaturase differs from Delta6 and Delta5 desaturases because its products are incorporated into more diverse lipid groups. Combinations of multiple transcription factors achieve this sophisticated differential regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data.

            New additional methods are presented for processing and visualizing mass spectrometry based molecular profile data, implemented as part of the recently introduced MZmine software. They include new features and extensions such as support for mzXML data format, capability to perform batch processing for large number of files, support for parallel processing, new methods for calculating peak areas using post-alignment peak picking algorithm and implementation of Sammon's mapping and curvilinear distance analysis for data visualization and exploratory analysis. MZmine is available under GNU Public license from http://mzmine.sourceforge.net/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men.

              We determined whether interindividual variation in hepatic insulin sensitivity could be attributed to variation in liver fat content (LFAT) independent of obesity. We recruited 30 healthy nondiabetic men whose LFAT (determined by proton spectroscopy); intraabdominal, sc, and total (determined by magnetic resonance imaging) fat; and insulin sensitivity of endogenous glucose rate of production (R(a)) and suppression of serum FFA [euglycemic insulin clamp combined with [3-(3)H]glucose (0-300 min); insulin infusion rate, 0.3 mU/kg.min, 120-300 min] were measured. The men were divided into groups of low (mean +/- SD, 1.7 +/- 0.2%) and high (10.5 +/- 2.0%) LFAT based on their median fat content. The low and high LFAT groups were comparable with respect to age (44 +/- 2 vs. 42 +/- 2 yr), body mass index (25 +/- 1 vs. 26 +/- 1 kg/m(2) ), waist to hip ratio (0.953 +/- 0.013 vs. 0.953 +/- 0.013), maximal oxygen uptake (35.6 +/- 1.5 vs. 33.5 +/- 1.5 ml/kg.min), and intraabdominal, sc, and total fat. The high compared with the low LFAT group had several features of insulin resistance, including fasting hyperinsulinemia (7.3 +/- 0.6 vs. 5.3 +/- 0.6 mU/liter; P < 0.02, high vs. low LFAT) hypertriglyceridemia (1.4 +/- 0.2 vs. 0.9 +/- 0.1 mmol/liter; P < 0.02), a low high density lipoprotein (HDL) cholesterol concentration (1.4 +/- 0.1 vs. 1.6 +/- 0.1 mmol/liter; P < 0.05), and a higher ambulatory 24-h systolic blood pressure (130 +/- 3 vs. 122 +/- 3 mm Hg; P < 0.05). Basal glucose R(a) and serum FFA were comparable between the groups, whereas insulin suppression of glucose R(a) [51 +/- 8 vs. 20 +/- 12 mg/m(2).min during 240-300 min (P < 0.05) or -55 +/- 7 vs. -85 +/- 12% below basal (P < 0.05, high vs. low LFAT)] and of serum FFA (299 +/- 33 vs. 212 +/- 13 micromol/liter; 240-300 min; P < 0.02) were impaired in the high compared with the low LFAT group. Insulin stimulation of glucose Rd were comparable in the men with high LFAT (141 +/- 12 mg/m(2).min) and those with low LFAT (156 +/- 14 mg/m(2).min; P = NS). Fat accumulation in the liver is, independent of body mass index and intraabdominal and overall obesity, characterized by several features of insulin resistance in normal weight and moderately overweight subjects.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                January 2009
                : 58
                : 1
                : 203-208
                Affiliations
                [1 ]Department of Medicine, Division of Diabetes, Helsinki, Finland
                [2 ]Minerva Medical Research Institute, Helsinki, Finland
                [3 ]VTT Technical Research Centre of Finland, Espoo, Finland
                [4 ]Department of Surgery, University of Helsinki, Helsinki, Finland
                [5 ]Department of Pathology, University of Helsinki and HUSLAB, Helsinki, Finland
                Author notes

                Corresponding author: Anna Kotronen, anna.kotronen@ 123456helsinki.fi

                Article
                581203
                10.2337/db08-1074
                2606873
                18952834
                ecadac6c-f632-4c6a-b2d2-a9c905a4a3e6
                Copyright © 2009, American Diabetes Association

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 5 August 2008
                : 17 October 2008
                Categories
                Pathophysiology

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article