6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioenergetic shift and actin cytoskeleton remodelling as acute vascular adaptive mechanisms to angiotensin II in murine retina and ophthalmic artery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ocular vascular dysfunction is a major contributing factor to the pathogenesis of glaucoma. In recent years, there has been a renewed interest in the role of angiotensin II (Ang II) in mediating the disease progression. Despite its (patho)physiological importance, the molecular mechanisms underlying Ang II-mediated oxidative stress remain largely unexplored in the ocular vasculature. Here, we provide the first direct evidence of the alterations of proteome and signalling pathways underlying Ang II-elicited oxidative insult independent of arterial pressure changes in the ophthalmic artery (OA) and retina (R) employing an in vitro experimental model. Both R and OA were isolated from male C57Bl/6J mice (n = 15/group; n = 5/biological replicate) and incubated overnight in medium containing either vehicle or Ang II (0.1 μM) at physiological conditions. Label-free quantitative mass spectrometry (MS)-based proteomics analysis identified a differential expression of 107 and 34 proteins in the R and OA, respectively. Statistical and bioinformatics analyses revealed that protein clusters involved in actin cytoskeleton and integrin-linked kinase signalling were significantly activated in the OA. Conversely, a large majority of differentially expressed retinal proteins were involved in dysregulation of numerous energy-producing and metabolic signalling pathways, hinting to a possible shift in retinal cell bioenergetics. Particularly, Ang II-mediated downregulation of septin-7 ( Sept7; p < 0.01) and superoxide dismutase [Cu-Zn] ( Sod1; p < 0.05), and upregulation of troponin T, fast skeletal muscle ( Tnnt3; p < 0.05) and tropomyosin alpha-3 chain ( Tpm3; p < 0.01) in the OA, and significant decreased expressions of two crystallin proteins ( Cryab; p < 0.05 and Crybb2; p < 0.0001) in the R were verified at the mRNA level, corroborating our proteomics findings. In summary, these results demonstrated that exogenous application of Ang II over an acute time period caused impairment of retinal bioenergetics and cellular demise, and actin cytoskeleton-mediated vascular remodelling in the OA.

          Graphical abstract

          Highlights

          • Acute Ang II stimulation elicits oxidative stress in ocular vasculature without pressor effect. .

          • Dysregulation of energy-producing and metabolic pathways are implicated in the retina. .

          • Actin cytoskeleton remodelling are vascular adaptation processes in the ophthalmic artery. .

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway.

          The failure of axons to regenerate is a major obstacle for functional recovery after central nervous system (CNS) injury. Removing extracellular inhibitory molecules results in limited axon regeneration in vivo. To test for the role of intrinsic impediments to axon regrowth, we analyzed cell growth control genes using a virus-assisted in vivo conditional knockout approach. Deletion of PTEN (phosphatase and tensin homolog), a negative regulator of the mammalian target of rapamycin (mTOR) pathway, in adult retinal ganglion cells (RGCs) promotes robust axon regeneration after optic nerve injury. In wild-type adult mice, the mTOR activity was suppressed and new protein synthesis was impaired in axotomized RGCs, which may contribute to the regeneration failure. Reactivating this pathway by conditional knockout of tuberous sclerosis complex 1, another negative regulator of the mTOR pathway, also leads to axon regeneration. Thus, our results suggest the manipulation of intrinsic growth control pathways as a therapeutic approach to promote axon regeneration after CNS injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults

            The reactive oxygen species (ROS) form under normal physiological conditions and may have both beneficial and harmful role. We search the literature and current knowledge in the aspect of ROS participation in the pathogenesis of anterior and posterior eye segment diseases in adults. ROS take part in the pathogenesis of keratoconus, Fuchs endothelial corneal dystrophy, and granular corneal dystrophy type 2, stimulating apoptosis of corneal cells. ROS play a role in the pathogenesis of glaucoma stimulating apoptotic and inflammatory pathways on the level of the trabecular meshwork and promoting retinal ganglion cells apoptosis and glial dysfunction in the posterior eye segment. ROS play a role in the pathogenesis of Leber's hereditary optic neuropathy and traumatic optic neuropathy. ROS induce apoptosis of human lens epithelial cells. ROS promote apoptosis of vascular and neuronal cells and stimulate inflammation and pathological angiogenesis in the course of diabetic retinopathy. ROS are associated with the pathophysiological parainflammation and autophagy process in the course of the age-related macular degeneration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The impact of ocular blood flow in glaucoma.

              Two principal theories for the pathogenesis of glaucomatous optic neuropathy (GON) have been described--a mechanical and a vascular theory. Both have been defended by various research groups over the past 150 years. According to the mechanical theory, increased intraocular pressure (IOP) causes stretching of the laminar beams and damage to retinal ganglion cell axons. The vascular theory of glaucoma considers GON as a consequence of insufficient blood supply due to either increased IOP or other risk factors reducing ocular blood flow (OBF). A number of conditions such as congenital glaucoma, angle-closure glaucoma or secondary glaucomas clearly show that increased IOP is sufficient to lead to GON. However, a number of observations such as the existence of normal-tension glaucoma cannot be satisfactorily explained by a pressure theory alone. Indeed, the vast majority of published studies dealing with blood flow report a reduced ocular perfusion in glaucoma patients compared with normal subjects. The fact that the reduction of OBF often precedes the damage and blood flow can also be reduced in other parts of the body of glaucoma patients, indicate that the hemodynamic alterations may at least partially be primary. The major cause of this reduction is not atherosclerosis, but rather a vascular dysregulation, leading to both low perfusion pressure and insufficient autoregulation. This in turn may lead to unstable ocular perfusion and thereby to ischemia and reperfusion damage. This review discusses the potential role of OBF in glaucoma and how a disturbance of OBF could increase the optic nerve's sensitivity to IOP.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                29 May 2020
                July 2020
                29 May 2020
                : 34
                : 101597
                Affiliations
                [a ]Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
                [b ]Department of Psychiatry and Psychotherapy & Focus Program Translational Neurosciences (FTN), University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
                Author notes
                []Corresponding author. Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany. caroline.manicam@ 123456unimedizin-mainz.de
                Article
                S2213-2317(20)30512-7 101597
                10.1016/j.redox.2020.101597
                7327981
                32513477
                ec731562-5d72-461b-a595-d098ac89d5cc
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2020
                : 22 May 2020
                : 25 May 2020
                Categories
                Articles from the Special Issue on Oxidative stress in retina and retinal pigment epithelium in health and disease; Edited by Vera Bonilha

                angiotensin ii,retina,ophthalmic artery,bioenergetics,cytoskeleton,glaucoma

                Comments

                Comment on this article