5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Zerumbone-Loaded Nanostructured Lipid Carrier Gel Enhances Wound Healing in Diabetic Rats

      research-article
      1 , 2 , , 3 , 4 ,
      BioMed Research International
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigated the healing effects of topical application of zerumbone, a well-known anti-inflammatory compounds loaded on nanostructured lipid carrier gel (Carbopol 940) (ZER-NLCG) on excisional wounds in streptozotocin-induced diabetic rats. Diabetic rats with inflicted superficial skin wound were topically treated with ZER-NLCG, empty NLCG, and silver sulfadiazine cream (SSDC) once daily for 21 days. Wound tissue samples were analyzed for proinflammatory cytokines, namely, interleukin-6 (IL-6), interleukin-1 β (IL-1 β), and tumor necrosis factor- α (TNF- α), hydroxyproline contents, catalase, superoxide dismutase activities, and lipid peroxidation level, and were subjected to histopathological analysis, respectively. Among the treated groups, ZER-NLCG was the most effective at decreasing proinflammatory cytokine level and inflammatory cell infiltration while increasing antioxidant enzyme activities, hydroxyproline content, and granulation of wound tissues of diabetic rats. ZER-NLCG is a potent formulation for the enhancement of wound healing in diabetic rats through its anti-inflammatory, antioxidant, and tissue repair activities.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Nano based drug delivery systems: recent developments and future prospects

          Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound Healing: A Cellular Perspective

            Wound healing is one of the most complex processes in the human body. It involves the spatial and temporal synchronization of a variety of cell types with distinct roles in the phases of hemostasis, inflammation, growth, re-epithelialization, and remodeling. With the evolution of single cell technologies, it has been possible to uncover phenotypic and functional heterogeneity within several of these cell types. There have also been discoveries of rare, stem cell subsets within the skin, which are unipotent in the uninjured state, but become multipotent following skin injury. Unraveling the roles of each of these cell types and their interactions with each other is important in understanding the mechanisms of normal wound closure. Changes in the microenvironment including alterations in mechanical forces, oxygen levels, chemokines, extracellular matrix and growth factor synthesis directly impact cellular recruitment and activation, leading to impaired states of wound healing. Single cell technologies can be used to decipher these cellular alterations in diseased states such as in chronic wounds and hypertrophic scarring so that effective therapeutic solutions for healing wounds can be developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation in wound repair: molecular and cellular mechanisms.

              In post-natal life the inflammatory response is an inevitable consequence of tissue injury. Experimental studies established the dogma that inflammation is essential to the establishment of cutaneous homeostasis following injury, and in recent years information about specific subsets of inflammatory cell lineages and the cytokine network orchestrating inflammation associated with tissue repair has increased. Recently, this dogma has been challenged, and reports have raised questions on the validity of the essential prerequisite of inflammation for efficient tissue repair. Indeed, in experimental models of repair, inflammation has been shown to delay healing and to result in increased scarring. Furthermore, chronic inflammation, a hallmark of the non-healing wound, predisposes tissue to cancer development. Thus, a more detailed understanding in mechanisms controlling the inflammatory response during repair and how inflammation directs the outcome of the healing process will serve as a significant milestone in the therapy of pathological tissue repair. In this paper, we review cellular and molecular mechanisms controlling inflammation in cutaneous tissue repair and provide a rationale for targeting the inflammatory phase in order to modulate the outcome of the healing response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2022
                10 September 2022
                : 2022
                : 1129297
                Affiliations
                1Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
                2Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
                3Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
                4Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
                Author notes

                Academic Editor: K. Arunachalam

                Author information
                https://orcid.org/0000-0002-8168-7048
                https://orcid.org/0000-0001-6625-508X
                https://orcid.org/0000-0003-0762-9242
                Article
                10.1155/2022/1129297
                9482501
                ec4e9b11-85d5-4b22-856c-4b83404f22d2
                Copyright © 2022 Shaymaa Fadhel Abbas Albaayit et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 February 2022
                : 9 May 2022
                Funding
                Funded by: Universiti Malaya
                Award ID: PG059-2013A
                Categories
                Research Article

                Comments

                Comment on this article