2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Primary Immune Responses and Affinity Maturation Are Controlled by IgD

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mature B cells co-express IgM and IgD B cell antigen receptors (BCR) on their surface. While IgM BCR expression is already essential at early stages of development, the role of the IgD-class BCR remains unclear as most B cell functions appeared unchanged in IgD-deficient mice. Here, we show that IgD-deficient mice have an accelerated rate of B cell responsiveness as they activate antibody production within 24h after immunization, whereas wildtype (WT) animals required 3 days to activate primary antibody responses. Strikingly, soluble monovalent antigen suppresses IgG antibody production induced by multivalent antigen in WT mice. In contrast, IgD-deficient mice were not able to modulate IgG responses suggesting that IgD controls the activation rate of B cells and subsequent antibody production by sensing and distinguishing antigen-valences. Using an insulin-derived peptide we tested the role of IgD in autoimmunity. We show that primary autoreactive antibody responses are generated in WT and in IgD-deficient mice. However, insulin-specific autoantibodies were detected earlier and caused more severe symptoms of autoimmune diabetes in IgD-deficient mice as compared to WT mice. The rapid control of autoimmune diabetes in WT animals was associated with the generation of high-affinity IgM that protects insulin from autoimmune degradation. In IgD-deficient mice, however, the generation of high-affinity protective IgM is delayed resulting in prolonged autoimmune diabetes. Our data suggest that IgD is required for the transition from primary, highly autoreactive, to secondary antigen-specific antibody responses generated by affinity maturation.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Systemic lupus erythematosus

          Systemic lupus erythematosus (SLE) is an autoimmune disease that can affect many organs, including the skin, joints, the central nervous system and the kidneys. Women of childbearing age and certain racial groups are typically predisposed to developing the condition. Rare, inherited, single-gene complement deficiencies are strongly associated with SLE, but the disease is inherited in a polygenic manner in most patients. Genetic interactions with environmental factors, particularly UV light exposure, Epstein-Barr virus infection and hormonal factors, might initiate the disease, resulting in immune dysregulation at the level of cytokines, T cells, B cells and macrophages. Diagnosis is primarily clinical and remains challenging because of the heterogeneity of SLE. Classification criteria have aided clinical trials, but, despite this, only one drug (that is, belimumab) has been approved for use in SLE in the past 60 years. The 10-year mortality has improved and toxic adverse effects of older medications such as cyclophosphamide and glucocorticoids have been partially offset by newer drugs such as mycophenolate mofetil and glucocorticoid-sparing regimes. However, further improvements have been hampered by the adverse effects of renal and neuropsychiatric involvement and late diagnosis. Adding to this burden is the increased risk of premature cardiovascular disease in SLE together with the risk of infection made worse by immunosuppressive therapy. Challenges remain with treatment-resistant disease and symptoms such as fatigue. Newer therapies may bring hope of better outcomes, and the refinement to stem cell and genetic techniques might offer a cure in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Predominant autoantibody production by early human B cell precursors.

            During B lymphocyte development, antibodies are assembled by random gene segment reassortment to produce a vast number of specificities. A potential disadvantage of this process is that some of the antibodies produced are self-reactive. We determined the prevalence of self-reactive antibody formation and its regulation in human B cells. A majority (55 to 75%) of all antibodies expressed by early immature B cells displayed self-reactivity, including polyreactive and anti-nuclear specificities. Most of these autoantibodies were removed from the population at two discrete checkpoints during B cell development. Inefficient checkpoint regulation would lead to substantial increases in circulating autoantibodies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of natural and immune IgM antibodies in immune responses.

              IgM antibodies constitute the major component of the natural antibodies and is also the first class of antibodies produced during a primary antibody response. The IgM-type antibodies differ from other classes of antibodies in that they are predominantly produced by B1 cells, in the absence of apparent stimulation by specific antigens. In addition, IgM antibodies are mostly encoded by germline V gene segments and have low affinities but broad specificites to both foreign and self structures. New developments regarding the function of both immune IgM antibodies and natural IgM antibodies will be examined here.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                09 August 2021
                2021
                : 12
                : 709240
                Affiliations
                [1]Institute of Immunology, Ulm University Medical Center , Ulm, Germany
                Author notes

                Edited by: Hermann Eibel, University of Freiburg Medical Center, Germany

                Reviewed by: Michel Cogne, University of Limoges, France; Arthur L. Shaffer, III, National Cancer Institute (NCI), United States

                *Correspondence: Hassan Jumaa, hassan.jumaa@ 123456uni-ulm.de

                †These authors have contributed equally to this work

                This article was submitted to B Cell Biology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2021.709240
                8381280
                34434193
                ec3c0c53-9229-4ac2-a791-e6377e052266
                Copyright © 2021 Amendt, Ayoubi, Linder, Allies, Young, Setz and Jumaa

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 May 2021
                : 15 July 2021
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 53, Pages: 14, Words: 7508
                Categories
                Immunology
                Original Research

                Immunology
                b cell selection,igd,antigen-valency,autoimmunity,igm,tolerance
                Immunology
                b cell selection, igd, antigen-valency, autoimmunity, igm, tolerance

                Comments

                Comment on this article