18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment

      , ,
      Environmental Science & Technology
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d17043299e65">Solar photovoltaics have great promise for a low-carbon future but remain expensive relative to other technologies. Greatly increased penetration of photovoltaics into global energy markets requires an expansion in attention from designs of high-performance to those that can deliver significantly lower cost per kilowatt-hour. To evaluate a new set of technical and economic performance targets, we examine material extraction costs and supply constraints for 23 promising semiconducting materials. Twelve composite materials systems were found to have the capacity to meet or exceed the annual worldwide electricity consumption of 17,000 TWh, of which nine have the potential for a significant cost reduction over crystalline silicon. We identify a large material extraction cost (cents/watt) gap between leading thin film materials and a number of unconventional solar cell candidates including FeS2, CuO, and Zn3P2. We find that devices performing below 10% power conversion efficiencies deliverthe same lifetime energy output as those above 20% when a 3/4 material reduction is achieved. Here, we develop a roadmap emphasizing low-cost alternatives that could become a dominant new approach for photovoltaics research and deployment. </p>

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          March 15 2009
          March 15 2009
          : 43
          : 6
          : 2072-2077
          Article
          10.1021/es8019534
          19368216
          ec32012c-3cfe-4c22-9f47-d8717991f822
          © 2009
          History

          Comments

          Comment on this article