5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preparation and Performances of Warp-Knitted Hernia Repair Mesh Fabricated with Chitosan Fiber

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, warp-knitted knitted fabrics with chitosan fibers for ventral hernia repair were fabricated with three kinds of structures. The properties of chitosan fiber, yarns, and fabrics were tested. The results demonstrated that the properties of a mesh fabricated with 1-0/1-2/2-3/2-1// structure were slightly better than those of other fabrics. The mechanical properties of the three produced fabrics were weak. However, the results demonstrated that chitosan meshes have many advantages, such as excellent hygroscopicity, and thermal and antimicrobial properties, which makes them one of the best materials for ventral hernia repair. The findings have theoretical and practical significance for the industrial uses of chitosan in ventral hernia repair.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Antimicrobial properties of chitosan and mode of action: a state of the art review.

          Owing to its high biodegradability, and nontoxicity and antimicrobial properties, chitosan is widely-used as an antimicrobial agent either alone or blended with other natural polymers. To broaden chitosan's antimicrobial applicability, comprehensive knowledge of its activity is necessary. The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action. Chitosan-mediated inhibition is affected by several factors can be classified into four types as intrinsic, environmental, microorganism and physical state, according to their respective roles. In this review, different physical states are comparatively discussed. Mode of antimicrobial action is discussed in parts of the active compound (chitosan) and the target (microorganisms) collectively and independently in same complex. Finally, the general antimicrobial applications of chitosan and perspectives about future studies in this field are considered. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering.

            L. Ma (2003)
            Porous scaffolds for skin tissue engineering were fabricated by freeze-drying the mixture of collagen and chitosan solutions. Glutaraldehyde (GA) was used to treat the scaffolds to improve their biostability. Confocal laser scanning microscopy observation confirmed the even distribution of these two constituent materials in the scaffold. The GA concentrations have a slight effect on the cross-section morphology and the swelling ratios of the cross-linked scaffolds. The collagenase digestion test proved that the presence of chitosan can obviously improve the biostability of the collagen/chitosan scaffold under the GA treatment, where chitosan might function as a cross-linking bridge. A detail investigation found that a steady increase of the biostability of the collagen/chitosan scaffold was achieved when GA concentration was lower than 0.1%, then was less influenced at a still higher GA concentration up to 0.25%. In vitro culture of human dermal fibroblasts proved that the GA-treated scaffold could retain the original good cytocompatibility of collagen to effectively accelerate cell infiltration and proliferation. In vivo animal tests further revealed that the scaffold could sufficiently support and accelerate the fibroblasts infiltration from the surrounding tissue. Immunohistochemistry analysis of the scaffold embedded for 28 days indicated that the biodegradation of the 0.25% GA-treated scaffold is a long-term process. All these results suggest that collagen/chitosan scaffold cross-linked by GA is a potential candidate for dermal equivalent with enhanced biostability and good biocompatibility.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antibacterial action of chitosan and carboxymethylated chitosan

                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                01 April 2019
                April 2019
                : 11
                : 4
                : 595
                Affiliations
                [1 ]Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi 214122, China; yushuang_ysh@ 123456163.com (S.Y.); jgm@ 123456jiangnan.edu.cn (G.J.)
                [2 ]State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
                Author notes
                Author information
                https://orcid.org/0000-0003-1450-9345
                Article
                polymers-11-00595
                10.3390/polym11040595
                6523771
                30960579
                ec2d3ec3-359b-4a82-a2bd-010ce631053d
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 11 March 2019
                : 27 March 2019
                Categories
                Article

                hernia repair mesh,chitosan fiber,warp-knitted mesh,mechanical properties,antibacterial property

                Comments

                Comment on this article