7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Astragalus IV Undermines Multi-Drug Resistance and Glycolysis of MDA-MB-231/ADR Cell Line by Depressing hsa_circ_0001982-miR-206/miR-613 Axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Allowing for the power of astragalus in improving cancer patients’ response to chemotherapy, we endeavored to clarify if hsa_circ_0001982-centered miRNA axes participated in the impact of astragaloside IV on multi-drug resistance (MDR) of triple-negative breast cancer (TNBC).

          Methods

          TNBC patients were recruited into an Astragalus detoxification decoction (ADD) treatment group (N=62) and a non-ADD treatment group (N=78), according to whether they consumed ADD after chemotherapy or not. Furthermore, drug resistance of the MDA-MB-231/ADR cell line in response to gemcitabine (GEM), adriamycin (ADM), oxaliplatin (OXA), and cisplatin (DDP) was evaluated, and glycolytic potential of MDA-MB-231/ADR cells was determined after astragaloside IV treatment or si-hsa_circ_0001982/miR-206 inhibitor/miR-613 inhibitor transfection.

          Results

          TNBC patients receiving ADD adjuvant therapy after chemotherapy, with decreased serum level of hsa_circ_0001982 and increased serum level of miR-206/miR-613 as relative to non-ADD treatment group ( P<0.05), were less likely to relapse than TNBC population not undergoing ADD treatment ( P<0.05). In addition, GEM/ADM/OXA/DDP-resistance and glycolysis of MDA-MB-231/ADR cell line were debilitated after exposure to astragaloside IV or transfection by si-hsa_circ_0001982 ( P<0.05). Nonetheless, miR-206/miR-613 inhibitor transfection reversed inhibitory effects of si-hsa_circ_0001982 and astragaloside IV on glycolysis and MDR of MDA-MB-231/ADR cell line ( P<0.05).

          Conclusion

          Astragaloside IV undermined MDR and glycolysis of MDA-MB-231/ADR cell line by blocking hsa_circ_0001982-miR-206/miR-613 axis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Comprehensive molecular portraits of human breast tumors

            Summary We analyzed primary breast cancers by genomic DNA copy number arrays, DNA methylation, exome sequencing, mRNA arrays, microRNA sequencing and reverse phase protein arrays. Our ability to integrate information across platforms provided key insights into previously-defined gene expression subtypes and demonstrated the existence of four main breast cancer classes when combining data from five platforms, each of which shows significant molecular heterogeneity. Somatic mutations in only three genes (TP53, PIK3CA and GATA3) occurred at > 10% incidence across all breast cancers; however, there were numerous subtype-associated and novel gene mutations including the enrichment of specific mutations in GATA3, PIK3CA and MAP3K1 with the Luminal A subtype. We identified two novel protein expression-defined subgroups, possibly contributed by stromal/microenvironmental elements, and integrated analyses identified specific signaling pathways dominant in each molecular subtype including a HER2/p-HER2/HER1/p-HER1 signature within the HER2-Enriched expression subtype. Comparison of Basal-like breast tumors with high-grade Serous Ovarian tumors showed many molecular commonalities, suggesting a related etiology and similar therapeutic opportunities. The biologic finding of the four main breast cancer subtypes caused by different subsets of genetic and epigenetic abnormalities raises the hypothesis that much of the clinically observable plasticity and heterogeneity occurs within, and not across, these major biologic subtypes of breast cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data

              Although microRNAs (miRNAs), other non-coding RNAs (ncRNAs) (e.g. lncRNAs, pseudogenes and circRNAs) and competing endogenous RNAs (ceRNAs) have been implicated in cell-fate determination and in various human diseases, surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs. In this study, we developed starBase v2.0 (http://starbase.sysu.edu.cn/) to systematically identify the RNA–RNA and protein–RNA interaction networks from 108 CLIP-Seq (PAR-CLIP, HITS-CLIP, iCLIP, CLASH) data sets generated by 37 independent studies. By analyzing millions of RNA-binding protein binding sites, we identified ∼9000 miRNA-circRNA, 16 000 miRNA-pseudogene and 285 000 protein–RNA regulatory relationships. Moreover, starBase v2.0 has been updated to provide the most comprehensive CLIP-Seq experimentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date. We identified ∼10 000 ceRNA pairs from CLIP-supported miRNA target sites. By combining 13 functional genomic annotations, we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks. Finally, we developed interactive web implementations to provide visualization, analysis and downloading of the aforementioned large-scale data sets. This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.
                Bookmark

                Author and article information

                Journal
                Cancer Manag Res
                Cancer Manag Res
                cmar
                cancmanres
                Cancer Management and Research
                Dove
                1179-1322
                22 July 2021
                2021
                : 13
                : 5821-5833
                Affiliations
                [1 ]Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University , Shanghai, 201100, People’s Republic of China
                [2 ]Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, 200062, People’s Republic of China
                [3 ]Department of Medical Rehabilitation, Heze Domestic Professional College , Heze, 274300, Shandong, People’s Republic of China
                Author notes
                Correspondence: Weiyan Liu; Daowen Jiang Department of General Surgery, Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University , No. 170 Xinsong Road, Shanghai, 201100, People’s Republic of China Email wyliu13@163.com; 18918169215@189.cn
                [*]

                These authors contributed equally to this work

                Article
                297008
                10.2147/CMAR.S297008
                8314933
                34326666
                ec0cb0bd-c953-4b12-8238-df938a9bbaad
                © 2021 Li et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 16 December 2020
                : 04 June 2021
                Page count
                Figures: 6, References: 35, Pages: 13
                Categories
                Original Research

                Oncology & Radiotherapy
                triple-negative breast cancer,astragaloside iv,hsa_circ_0001982,mir-206,mir-613,multi-drug resistance,glycolysis

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content113

                Cited by4

                Most referenced authors1,050