51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adaptation of Glycyrrhiza glabra L. to water deficiency based on carbohydrate and fatty acid quantity and quality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Water deficit affects agricultural systems negatively globally. This research objective was to mitigate drought’s detrimental effects on plants metabolite profiling by utilizing biofertilizers and mineral nutrition. The carbohydrate content and fatty acid profile of Licorice ( Glycyrrhiza glabra) were assessed under Silicon (Si) nutrition, Claroiedoglomus etunicatum inoculation (F), and drought stress (100, 80, 60, 40, and 20% of field capacity (FC)). Results showed that Si application increased total sugar content under severe drought levels (20 and 40% FC) and made it reach 12.41 and 12.63 g/100 g DW, respectively. Sucrose, as the predominant sugar of licorice, was at its highest level (13.1 g/100 g DW) in response to integrated values of F and Si (60% FC). Gas chromatography–mass spectrometry showed that the majority of fatty acid components in plants were 9-Octadecenoic acid (8.72–71.27%), 9,12-Octadecadienoic acid (0.1–56.43%), Hexadecanoic acid (12.84–30.59%), Octadecanoic acid (6.9–15.3%), Docosanoic acid (0.57–2.77%), Eicosanoic acid (1.07–2.64%), and 7-Hexadecenoic acid (0.26–2.62%). Since a lower omega6/omega3 ratio represents a healthier product, the lowest ratio (0.25%) was observed in well-watered inoculated plants. Also, severe drought-treated plants under integrated Si and F applications showed a low omega6/omega3 ratio (1.88%). In conclusion, Si and F improved synergistically the carbohydrate content and fatty acid profile in plants, despite the drought stress.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          INFOGEST static in vitro simulation of gastrointestinal food digestion

          Developing a mechanistic understanding of the impact of food structure and composition on human health has increasingly involved simulating digestion in the upper gastrointestinal tract. These simulations have used a wide range of different conditions that often have very little physiological relevance, and this impedes the meaningful comparison of results. The standardized protocol presented here is based on an international consensus developed by the COST INFOGEST network. The method is designed to be used with standard laboratory equipment and requires limited experience to encourage a wide range of researchers to adopt it. It is a static digestion method that uses constant ratios of meal to digestive fluids and a constant pH for each step of digestion. This makes the method simple to use but not suitable for simulating digestion kinetics. Using this method, food samples are subjected to sequential oral, gastric and intestinal digestion while parameters such as electrolytes, enzymes, bile, dilution, pH and time of digestion are based on available physiological data. This amended and improved digestion method (INFOGEST 2.0) avoids challenges associated with the original method, such as the inclusion of the oral phase and the use of gastric lipase. The method can be used to assess the endpoints resulting from digestion of foods by analyzing the digestion products (e.g., peptides/amino acids, fatty acids, simple sugars) and evaluating the release of micronutrients from the food matrix. The whole protocol can be completed in ~7 d, including ~5 d required for the determination of enzyme activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Reprogramming of fatty acid metabolism in cancer

            A common feature of cancer cells is their ability to rewire their metabolism to sustain the production of ATP and macromolecules needed for cell growth, division and survival. In particular, the importance of altered fatty acid metabolism in cancer has received renewed interest as, aside their principal role as structural components of the membrane matrix, they are important secondary messengers, and can also serve as fuel sources for energy production. In this review, we will examine the mechanisms through which cancer cells rewire their fatty acid metabolism with a focus on four main areas of research. (1) The role of de novo synthesis and exogenous uptake in the cellular pool of fatty acids. (2) The mechanisms through which molecular heterogeneity and oncogenic signal transduction pathways, such as PI3K–AKT–mTOR signalling, regulate fatty acid metabolism. (3) The role of fatty acids as essential mediators of cancer progression and metastasis, through remodelling of the tumour microenvironment. (4) Therapeutic strategies and considerations for successfully targeting fatty acid metabolism in cancer. Further research focusing on the complex interplay between oncogenic signalling and dysregulated fatty acid metabolism holds great promise to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Molecular and Evolutionary Mechanisms of Cuticular Wax for Plant Drought Tolerance

              Cuticular wax, the first protective layer of above ground tissues of many plant species, is a key evolutionary innovation in plants. Cuticular wax safeguards the evolution from certain green algae to flowering plants and the diversification of plant taxa during the eras of dry and adverse terrestrial living conditions and global climate changes. Cuticular wax plays significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, insects, high salinity, and low temperature. Drought, a major type of abiotic stress, poses huge threats to global food security and health of terrestrial ecosystem by limiting plant growth and crop productivity. The composition, biochemistry, structure, biosynthesis, and transport of plant cuticular wax have been reviewed extensively. However, the molecular and evolutionary mechanisms of cuticular wax in plants in response to drought stress are still lacking. In this review, we focus on potential mechanisms, from evolutionary, molecular, and physiological aspects, that control cuticular wax and its roles in plant drought tolerance. We also raise key research questions and propose important directions to be resolved in the future, leading to potential applications of cuticular wax for water use efficiency in agricultural and environmental sustainability.
                Bookmark

                Author and article information

                Contributors
                saharkhiz@shirazu.ac.ir
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                31 January 2023
                31 January 2023
                2023
                : 13
                : 1766
                Affiliations
                [1 ]GRID grid.412573.6, ISNI 0000 0001 0745 1259, Department of Horticultural Science, Faculty of Agriculture, , Shiraz University, ; Shiraz, 71441-13131 Iran
                [2 ]GRID grid.412571.4, ISNI 0000 0000 8819 4698, Medicinal Plants Processing Research Center, , Shiraz University of Medical Sciences, ; Shiraz, Iran
                [3 ]GRID grid.412573.6, ISNI 0000 0001 0745 1259, Institute of Biotechnology, , Shiraz University, ; Shiraz, 71441-65186 Iran
                [4 ]GRID grid.412573.6, ISNI 0000 0001 0745 1259, Department of Soil Science, College of Agriculture, , University of Shiraz, ; Shiraz, Iran
                [5 ]Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, 73819-43885 Iran
                Article
                28807
                10.1038/s41598-023-28807-6
                9889331
                36721012
                ec0051be-92dc-4c08-96df-42bba4b08d6b
                © The Author(s) 2023

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 September 2022
                : 24 January 2023
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100005071, Shiraz University;
                Award ID: 110
                Award ID: 110
                Award ID: 110
                Award ID: 110
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2023

                Uncategorized
                biochemistry,plant sciences,biogeochemistry
                Uncategorized
                biochemistry, plant sciences, biogeochemistry

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content172

                Cited by2

                Most referenced authors9,308