Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medical image analysis remains a challenging application area for artificial intelligence. When applying machine learning, obtaining ground-truth labels for supervised learning is more difficult than in many more common applications of machine learning. This is especially so for datasets with abnormalities, as tissue types and the shapes of the organs in these datasets differ widely. However, organ detection in such an abnormal dataset may have many promising potential real-world applications, such as automatic diagnosis, automated radiotherapy planning, and medical image retrieval, where new multimodal medical images provide more information about the imaged tissues for diagnosis. Here, we test the application of deep learning methods to organ identification in magnetic resonance medical images, with visual and temporal hierarchical features learned to categorize object classes from an unlabeled multimodal DCE-MRI dataset so that only a weakly supervised training is required for a classifier. A probabilistic patch-based method was employed for multiple organ detection, with the features learned from the deep learning model. This shows the potential of the deep learning model for application to medical images, despite the difficulty of obtaining libraries of correctly labeled training datasets and despite the intrinsic abnormalities present in patient datasets.

          Related collections

          Author and article information

          Journal
          IEEE Trans Pattern Anal Mach Intell
          IEEE transactions on pattern analysis and machine intelligence
          Institute of Electrical and Electronics Engineers (IEEE)
          1939-3539
          0098-5589
          Aug 2013
          : 35
          : 8
          Affiliations
          [1 ] Institute of Cancer Rearch Royal Marsden NHS Foundation Trust, Sutton, United Kingdom. hoo.shin@icr.ac.uk
          Article
          10.1109/TPAMI.2012.277
          23787345
          ebec8947-b7ca-44cb-bb57-d4498c47fdca
          History

          Comments

          Comment on this article