3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Daily Early-Life Exposures to Diet Soda and Aspartame Are Associated with Autism in Males: A Case-Control Study

      , , , , ,
      Nutrients
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since its introduction, aspartame—the leading sweetener in U.S. diet sodas (DS)—has been reported to cause neurological problems in some users. In prospective studies, the offspring of mothers who consumed diet sodas/beverages (DSB) daily during pregnancy experienced increased health problems. We hypothesized that gestational/early-life exposure to ≥1 DS/day (DSearly) or equivalent aspartame (ASPearly: ≥177 mg/day) increases autism risk. The case-control Autism Tooth Fairy Study obtained retrospective dietary recalls for DSB and aspartame consumption during pregnancy/breastfeeding from the mothers of 235 offspring with autism spectrum disorder (ASD: cases) and 121 neurotypically developing offspring (controls). The exposure odds ratios (ORs) for DSearly and ASPearly were computed for autism, ASD, and the non-regressive conditions of each. Among males, the DSearly odds were tripled for autism (OR = 3.1; 95% CI: 1.02, 9.7) and non-regressive autism (OR = 3.5; 95% CI: 1.1, 11.1); the ASPearly odds were even higher: OR = 3.4 (95% CI: 1.1, 10.4) and 3.7 (95% CI: 1.2, 11.8), respectively (p < 0.05 for each). The ORs for non-regressive ASD in males were almost tripled but were not statistically significant: DSearly OR = 2.7 (95% CI: 0.9, 8.4); ASPearly OR = 2.9 (95% CI: 0.9, 8.8). No statistically significant associations were found in females. Our findings contribute to the growing literature raising concerns about potential offspring harm from maternal DSB/aspartame intake in pregnancy.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          The gut microbiota influences blood-brain barrier permeability in mice.

          Pivotal to brain development and function is an intact blood-brain barrier (BBB), which acts as a gatekeeper to control the passage and exchange of molecules and nutrients between the circulatory system and the brain parenchyma. The BBB also ensures homeostasis of the central nervous system (CNS). We report that germ-free mice, beginning with intrauterine life, displayed increased BBB permeability compared to pathogen-free mice with a normal gut flora. The increased BBB permeability was maintained in germ-free mice after birth and during adulthood and was associated with reduced expression of the tight junction proteins occludin and claudin-5, which are known to regulate barrier function in endothelial tissues. Exposure of germ-free adult mice to a pathogen-free gut microbiota decreased BBB permeability and up-regulated the expression of tight junction proteins. Our results suggest that gut microbiota-BBB communication is initiated during gestation and propagated throughout life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Prevalence of childhood and adult obesity in the United States, 2011-2012.

            More than one-third of adults and 17% of youth in the United States are obese, although the prevalence remained stable between 2003-2004 and 2009-2010. To provide the most recent national estimates of childhood obesity, analyze trends in childhood obesity between 2003 and 2012, and provide detailed obesity trend analyses among adults. Weight and height or recumbent length were measured in 9120 participants in the 2011-2012 nationally representative National Health and Nutrition Examination Survey. In infants and toddlers from birth to 2 years, high weight for recumbent length was defined as weight for length at or above the 95th percentile of the sex-specific Centers for Disease Control and Prevention (CDC) growth charts. In children and adolescents aged 2 to 19 years, obesity was defined as a body mass index (BMI) at or above the 95th percentile of the sex-specific CDC BMI-for-age growth charts. In adults, obesity was defined as a BMI greater than or equal to 30. Analyses of trends in high weight for recumbent length or obesity prevalence were conducted overall and separately by age across 5 periods (2003-2004, 2005-2006, 2007-2008, 2009-2010, and 2011-2012). In 2011-2012, 8.1% (95% CI, 5.8%-11.1%) of infants and toddlers had high weight for recumbent length, and 16.9% (95% CI, 14.9%-19.2%) of 2- to 19-year-olds and 34.9% (95% CI, 32.0%-37.9%) of adults (age-adjusted) aged 20 years or older were obese. Overall, there was no significant change from 2003-2004 through 2011-2012 in high weight for recumbent length among infants and toddlers, obesity in 2- to 19-year-olds, or obesity in adults. Tests for an interaction between survey period and age found an interaction in children (P = .03) and women (P = .02). There was a significant decrease in obesity among 2- to 5-year-old children (from 13.9% to 8.4%; P = .03) and a significant increase in obesity among women aged 60 years and older (from 31.5% to 38.1%; P = .006). Overall, there have been no significant changes in obesity prevalence in youth or adults between 2003-2004 and 2011-2012. Obesity prevalence remains high and thus it is important to continue surveillance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner.

              Bacterial colonisation of the intestine has a major role in the post-natal development and maturation of the immune and endocrine systems. These processes are key factors underpinning central nervous system (CNS) signalling. Regulation of the microbiome-gut-brain axis is essential for maintaining homeostasis, including that of the CNS. However, there is a paucity of data pertaining to the influence of microbiome on the serotonergic system. Germ-free (GF) animals represent an effective preclinical tool to investigate such phenomena. Here we show that male GF animals have a significant elevation in the hippocampal concentration of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid, its main metabolite, compared with conventionally colonised control animals. Moreover, this alteration is sex specific in contrast with the immunological and neuroendocrine effects which are evident in both sexes. Concentrations of tryptophan, the precursor of serotonin, are increased in the plasma of male GF animals, suggesting a humoral route through which the microbiota can influence CNS serotonergic neurotransmission. Interestingly, colonisation of the GF animals post weaning is insufficient to reverse the CNS neurochemical consequences in adulthood of an absent microbiota in early life despite the peripheral availability of tryptophan being restored to baseline values. In addition, reduced anxiety in GF animals is also normalised following restoration of the intestinal microbiota. These results demonstrate that CNS neurotransmission can be profoundly disturbed by the absence of a normal gut microbiota and that this aberrant neurochemical, but not behavioural, profile is resistant to restoration of a normal gut flora in later life.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NUTRHU
                Nutrients
                Nutrients
                MDPI AG
                2072-6643
                September 2023
                August 29 2023
                : 15
                : 17
                : 3772
                Article
                10.3390/nu15173772
                37686804
                ebb44341-e5a3-4c9b-8f24-84345943c58d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article