4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors

      , ,
      Cancer Research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P2">The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease but inevitably becomes re-activated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13 and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13 and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome. </p>

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Cooperativity and Equilibrium with FOXA1 Define the Androgen Receptor Transcriptional Program

          The pioneering factor FOXA1 opens chromatin to facilitate androgen receptor (AR) binding to prostate-specific genes. How FOXA1 controls the AR cistrome, however, is incompletely understood. Here we show that AR directly binds chromatin through the androgen-response elements (AREs). FOXA1 is not required for AR-chromatin interaction, but instrumental in recruiting AR to low-affinity half-AREs by opening local chromatin around adjacent FKHD sites. Too much FOXA1 creates excessive open chromatin regions, which serve as reservoirs that retain AR via abundant half-AREs, thereby reducing its availability for specific sites. FOXA1 down-regulation, by contrast, relinquishes AR to permissively bind AREs across the genome, resulting in substantial AR binding events and AR-target gene expression even in the absence of androgen. Taken together, our data illustrate the mechanistic details by which cooperativity and equilibrium with FOXA1 define AR cistrome and reveal a previously unknown function of FOXA1 in inhibiting AR signaling and castration-resistant prostate cancer growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression

            Prostate cancer (PC) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation antiandrogen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and a basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable upregulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of the TGF-β pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of the TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 downregulation induces TGF-β signaling, EMT, and cell motility, which is effectively blocked by the TGF-β receptor I inhibitor galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-β signaling, indicated by SMAD2 phosphorylation, in CRPC as compared with primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PC cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-β signaling, and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FOXA2 is a Sensitive and Specific marker for Small Cell Neuroendocrine Carcinoma of the Prostate

              The median survival of patients with small cell neuroendocrine carcinoma is significantly shorter than that of patients with classic acinar-type adenocarcinoma. Small cell neuroendocrine carcinoma is traditionally diagnosed based on histologic features because expression of current immunohistochemical markers is inconsistent. This is a challenging diagnosis even for expert pathologists and particularly so for pathologists who do not specialize in prostate cancer. New biomarkers to aid in the diagnosis of small cell neuroendocrine carcinoma are therefore urgently needed. We discovered that FOXA2, a pioneer transcription factor, is frequently and specifically expressed in small cell neuroendocrine carcinoma compared to prostate adenocarcinoma from published mRNA-sequencing data of a wide range of human prostate cancers. We verified the expression of FOXA2 in human prostate cancer cell lines and xenografts, patient biopsy specimens, tissue microarrays of prostate cancers with lymph node metastasis, primary small cell neuroendocrine carcinoma, and metastatic treatment-related small cell neuroendocrine carcinoma and cases from a rapid autopsy program. FOXA2 expression was present in NCI-H660 and PC3 neuroendocrine cell lines, but not in LNCAP and CWR22 adenocarcinoma cell lines. Of the human prostate cancer specimens, 20 of 235 specimens (8.5%) showed diagnostic histologic features of small cell neuroendocrine carcinoma as judged histologically. Fifteen of 20 small cell neuroendocrine carcinoma tissues (75%) showed strong expression of FOXA2 (staining intensity 2 or 3). FOXA2 expression was also detected in 9 of 215 prostate cancer tissues (4.2%) that were histologically defined as adenocarcinoma. Our findings demonstrate that FOXA2 is a sensitive and specific molecular marker that may be extremely valuable in the pathologic diagnosis of small cell neuroendocrine carcinoma.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cancer Research
                Cancer Res
                American Association for Cancer Research (AACR)
                0008-5472
                1538-7445
                June 15 2020
                June 15 2020
                June 15 2020
                February 24 2020
                : 80
                : 12
                : 2427-2436
                Article
                10.1158/0008-5472.CAN-19-3447
                7299826
                32094298
                eb802558-7487-4256-b85f-08eccc9703df
                © 2020
                History

                Comments

                Comment on this article