39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OsCPK10 mediates drought tolerance and blast disease resistance in rice plants by enhancing their reactive oxygen species scavenging capacity and so reducing oxidative damage associated with both stresses.

          Abstract

          Plant growth and productivity is negatively affected by different stresses. Most stresses trigger calcium signals that initiate acclimation responses in plants. The multigene family of plant calcium-dependent protein kinases (CPKs) functions in multiple stress responses by transducing calcium signals into phosphorylation events. This work reports that the OsCPK10 isoform positively mediates tolerance to different stresses in rice plants by enhancing their antioxidant capacity and protecting them from reactive oxygen species (ROS) damage, with the uncontrolled generation of ROS being a common feature of these stresses. Here, we show that the constitutive accumulation of an HA-tagged OsCPK10 full-length protein enhances the hydrogen peroxide detoxifying capacity of rice plants during desiccation. This is achived by modulating the accumulation of catalase proteins, which reduces the extent of lipid peroxidation and protects the integrity of cell membranes, resulting in drought tolerance. OsCPK10HA accumulation also confers blast disease resistance by interfering with fungal necrotrophic growth via a reduction in the accumulation of hydrogen peroxide. Furthermore, we show by bimolecular complementation assays that OsCPK10 is a plasma membrane protein that physically interacts in vivo with catalase A. OsCPK10 therefore appears to be a good molecular target to improve tolerance to abiotic stresses as well as to blast disease, which limit rice crop productivity.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: not found
          • Article: not found

          Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential innate immune signalling via Ca2+ sensor protein kinases

            Innate immunity represents the first line of inducible defense against microbial infection in plants and animals1–3. In both kingdoms, recognition of pathogen- or microbe-associated molecular patterns (PAMPs or MAMPs), such as flagellin, initiates convergent signalling pathways involving MAP kinase (MAPK) cascades and global transcriptional changes to boost immunity1–4. Although Ca2+ has long been recognized as an essential and conserved primary mediator in plant defense responses, how Ca2+ signals are sensed and relayed into early MAMP signalling is unknown5,6. Here, we use a functional genomic screen and genome-wide gene expression profiling to show that four calcium-dependent protein kinases (CDPKs) are Ca2+ sensor PKs critical to transcriptional reprogramming in plant innate immune signalling. Unexpectedly, CDPKs and MAPK cascades act differentially in four MAMP-mediated regulatory programs to control early genes involved in synthesis of defense peptides and metabolites, cell wall modifications and redox signalling. Transcriptome profile comparison suggests that CDPKs are the convergence point of signalling triggered by most MAMPs. Double, triple and quadruple cpk mutant plants display progressively diminished oxidative burst and gene activation induced by flg22, as well as compromised pathogen defense. In contrast to negative roles of calmodulin (CAM) and a CAM-activated transcription factor in plant defense7,8, the present study reveals Ca2+ signalling complexity and demonstrates key positive roles of specific CDPKs in initial MAMP signalling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.

              Many abiotic stress-inducible genes contain two cis-acting elements, namely a dehydration-responsive element (DRE; TACCGACAT) and an ABA-responsive element (ABRE; ACGTGG/TC), in their promoter regions. We precisely analyzed the 120 bp promoter region (-174 to -55) of the Arabidopsis rd29A gene whose expression is induced by dehydration, high-salinity, low-temperature, and abscisic acid (ABA) treatments and whose 120 bp promoter region contains the DRE, DRE/CRT-core motif (A/GCCGAC), and ABRE sequences. Deletion and base substitution analyses of this region showed that the DRE-core motif functions as DRE and that the DRE/DRE-core motif could be a coupling element of ABRE. Gel mobility shift assays revealed that DRE-binding proteins (DREB1s/CBFs and DREB2s) bind to both DRE and the DRE-core motif and that ABRE-binding proteins (AREBs/ABFs) bind to ABRE in the 120 bp promoter region. In addition, transactivation experiments using Arabidopsis leaf protoplasts showed that DREBs and AREBs cumulatively transactivate the expression of a GUS reporter gene fused to the 120 bp promoter region of rd29A. These results indicate that DRE and ABRE are interdependent in the ABA-responsive expression of the rd29A gene in response to ABA in Arabidopsis.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                17 May 2017
                02 May 2017
                02 May 2017
                : 68
                : 11
                : 2963-2975
                Affiliations
                Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Edifici CRAG, Campus de la UAB, Bellaterra, Barcelona, Spain
                Author notes
                Author information
                http://orcid.org/0000-0002-5578-3175
                Article
                erx145
                10.1093/jxb/erx145
                5853374
                28472292
                eb72f616-c7c5-4572-bddc-ccada0a6e1f4
                © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 February 2017
                : 05 April 2017
                Page count
                Pages: 13
                Categories
                Research Paper

                Plant science & Botany
                blast disease,calcium-dependent protein kinases,catalase,drought,oxidative damage,rice,ros

                Comments

                Comment on this article