5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The use of microfiber composites of elastin-like protein matrix reinforced with synthetic collagen in the design of vascular grafts.

      Biomaterials
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collagen and elastin networks contribute to highly specialized biomechanical responses in numerous tissues and species. Biomechanical properties such as modulus, elasticity, and strength ultimately affect tissue function and durability, as well as local cellular behavior. In the case of vascular bypass grafts, compliance at physiologic pressures is correlated with increased patency due to a reduction in anastomotic intimal hyperplasia. In this report, we combine extracellular matrix (ECM) protein analogues to yield multilamellar vascular grafts comprised of a recombinant elastin-like protein matrix reinforced with synthetic collagen microfibers. Structural analysis revealed that the fabrication scheme permits a range of fiber orientations and volume fractions, leading to tunable mechanical properties. Burst strengths of 239-2760 mm Hg, compliances of 2.8-8.4%/100 mm Hg, and suture retention strengths of 35-192 gf were observed. The design most closely approximating all target criteria displayed a burst strength of 1483 +/- 143 mm Hg, a compliance of 5.1 +/- 0.8%/100 mm Hg, and a suture retention strength of 173 +/- 4 gf. These results indicate that through incorporation of reinforcing collagen microfibers, recombinant elastomeric protein-based biomaterials can play a significant role in load bearing tissue substitutes. We believe that similar composites can be incorporated into tissue engineering schemes that seek to integrate cells within the structure, prior to or after implantation in vivo.

          Related collections

          Author and article information

          Journal
          20584549
          3849028
          10.1016/j.biomaterials.2010.05.014

          Comments

          Comment on this article