1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regenerative Effect of Adipose Derived Mesenchymal Stem Cells on Ganglion Cells in the Hypoxic Organotypic Retina Culture

      case-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          To examine whether ischemic retinal ganglion cells (RGCs) will be salvaged from cell death by human adipose-derived mesenchymal stem cells (ADSCs) in an organotypic retina model.

          Methods and Results

          Deprived of arterial oxygen supply, whole mice retinas were cultured as an ex vivo organotypic cultures on an insert membrane in a 24-well plate. The therapeutic potential of ADSCs was examined by co-culture with organotypic retinas. ADSCs were seeded on top of the RGCs allowing direct contact, or at the bottom of the well, sharing the same culture media and allowing a paracrine activity. The number of surviving RGCs was assessed using Brn3a staining and confocal microscopy. Cytokine secretion of ADSCs to medium was analyzed by cytokine array. When co-cultured with ADSCs, the number of surviving RGCs was similarly significantly higher in both treatment groups compared to controls. Analysis of ADSCs cytokines secretion profile, showed secretion of anti-apoptotic and pro-proliferative cytokines (threshold>1.4). Transplantation of ADSCs in a co-culture system with organotypic ischemic retinas resulted in RGCs recovery. Since there was no advantage to direct contact of ADSCs with RGCs, the beneficial effect seen may be related to paracrine activity of ADSCs.

          Conclusions

          These data correlated with secretion profile of ADSCs’ anti-apoptotic and pro-proliferative cytokines.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas.

          To characterize Brn3a expression in adult albino rat retinal ganglion cells (RGCs) in naïve animals and in animals subjected to complete intraorbital optic nerve transection (IONT) or crush (IONC). Rats were divided into three groups, naïve, IONT, and IONC. Two-, 5-, 9-, or 14-day postlesion (dpl) retinas were examined for immunoreactivity for Brn3a. Before the injury, the RGCs were labeled with Fluorogold (FG; Fluorochrome, Corp. Denver, CO). Brn3a retinal expression was also determined by Western blot analysis. The proportion of RGCs double labeled with Brn3a and FG was determined in radial sections. The temporal course of reduction in Brn3a(+) RGCs and FG(+) RGCs induced by IONC or IONT was assessed by quantifying, in the same wholemounts, the number of surviving FG-labeled RGCs and Brn3a(+)RGCs at the mentioned time points. The total number of FG(+)RGCs was automatically counted in naïve and injured retinas (2 and 5 dpl) or estimated by manual quantification in retinas processed at 9 and 14 dpl. All Brn3a immunopositive RGCs were counted using an automatic routine specifically developed for this purpose. This protocol allowed, as well, the investigation of the spatial distribution of these neurons. Brn3a(+) cells were only present in the ganglion cell layer and showed a spatial distribution comparable to that of FG(+) cells. In the naïve retinal wholemounts the mean (mean +/- SEM; n = 14) total number of FG(+)RGCs and Brn3a(+)RGCs was 80,251 +/- 2,210 and 83,449 +/- 4,541, respectively. Whereas in the radial sections, 92.2% of the FG(+)RGCs were also Brn3a(+), 4.4% of the RGCs were Brn3a(+)FG(-) and 3.4% were FG(+)Brn3a(-). Brn3a expression pattern was maintained in injured RGCs. The temporal course of Brn3a(+)RGC and FG(+)RGC loss induced by IONC or IONT followed a similar trend, but Brn3a(+)RGCs loss was detected earlier than that of FG(+)RGCs. Independent of the marker used to detect the RGCs, it was observed that their loss was quicker and more severe after IONT than after IONC. Brn3a can be used as a reliable, efficient ex vivo marker to identify and quantify RGCs in control and optic nerve-injured retinas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose-derived stem cells for regenerative medicine.

            The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate along multiple lineage pathways. The isolation, characterization, and preclinical and clinical application of adipose-derived stem cells (ASCs) are reviewed in this article.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stem cell paracrine actions and tissue regeneration.

              Stem cells have emerged as a key element of regenerative medicine therapies due to their inherent ability to differentiate into a variety of cell phenotypes, thereby providing numerous potential cell therapies to treat an array of degenerative diseases and traumatic injuries. A recent paradigm shift has emerged suggesting that the beneficial effects of stem cells may not be restricted to cell restoration alone, but also due to their transient paracrine actions. Stem cells can secrete potent combinations of trophic factors that modulate the molecular composition of the environment to evoke responses from resident cells. Based on this new insight, current research directions include efforts to elucidate, augment and harness stem cell paracrine mechanisms for tissue regeneration. This article discusses the existing studies on stem/progenitor cell trophic factor production, implications for tissue regeneration and cancer therapies, and development of novel strategies to use stem cell paracrine delivery for regenerative medicine.
                Bookmark

                Author and article information

                Journal
                Int J Stem Cells
                Int J Stem Cells
                International Journal of Stem Cells
                Korean Society for Stem Cell Research
                2005-3606
                2005-5447
                2023
                31 December 2022
                31 December 2022
                : 16
                : 2
                : 244-249
                Affiliations
                [1 ]Department of Ophthalmology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
                [2 ]Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
                Author notes
                Correspondence to Aya Barzelay, Department of Ophthalmology, Tel-Aviv Sourasky Medical Center (TLVMC), Weizmann St. 6, Tel-Aviv-Yafo 6423906, Israel, Tel: +972-(0)523987091, Fax: +972-3-6973867, E-mail: aya.barzelay@ 123456gmail.com
                Article
                ijsc-16-2-244
                10.15283/ijsc22041
                10226860
                36581366
                eb452acf-8db9-46ab-a6c6-055b6e536752
                Copyright © 2023 by the Korean Society for Stem Cell Research

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 March 2022
                : 5 August 2022
                : 21 September 2022
                Funding
                Acknowledgments This study was supported from Orion grant (213310).
                Categories
                Technical Report

                ischemia,retina,adipose-derived mesenchymal stem cells,ganglion cells,optic nerve,hypoxia

                Comments

                Comment on this article