28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone marrow stromal antigen 2 expressed in cancer cells promotes mammary tumor growth and metastasis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Several innate immunity genes are overexpressed in human cancers and their roles remain controversial. Bone marrow stromal antigen 2 (BST-2) is one such gene whose role in cancer is not clear. BST-2 is a unique innate immunity gene with both antiviral and pro-tumor functions and therefore can serve as a paradigm for understanding the roles of other innate immunity genes in cancers.

          Methods

          Meta-analysis of tumors from breast cancer patients obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets were evaluated for levels of BST-2 expression and for tumor aggressiveness. In vivo, we examined the effect of knockdown of BST-2 in two different murine carcinoma cells on tumor growth, metastasis, and survival . In vitro, we assessed the effect of carcinoma cell BST-2 knockdown and/or overexpression on adhesion, anchorage-independent growth, migration, and invasion.

          Results

          BST-2 in breast tumors and mammary cancer cells is a strong predictor of tumor size, tumor aggressiveness, and host survival. In humans, BST-2 mRNA is elevated in metastatic and invasive breast tumors. In mice, orthotopic implantation of mammary tumor cells lacking BST-2 increased tumor latency, decreased primary tumor growth, reduced metastases to distal organs, and prolonged host survival. Furthermore, we found that the cellular basis for the role of BST-2 in promoting tumorigenesis include BST-2-directed enhancement in cancer cell adhesion, anchorage-independency, migration, and invasion.

          Conclusions

          BST-2 contributes to the emergence of neoplasia and malignant progression of breast cancer. Thus, BST-2 may (1) serve as a biomarker for aggressive breast cancers, and (2) be a novel target for breast cancer therapeutics.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13058-014-0493-8) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu.

          Human cells possess an antiviral activity that inhibits the release of retrovirus particles, and other enveloped virus particles, and is antagonized by the HIV-1 accessory protein, Vpu. This antiviral activity can be constitutively expressed or induced by interferon-alpha, and it consists of protein-based tethers, which we term 'tetherins', that cause retention of fully formed virions on infected cell surfaces. Using deductive constraints and gene expression analyses, we identify CD317 (also called BST2 or HM1.24), a membrane protein of previously unknown function, as a tetherin. Specifically, CD317 expression correlated with, and induced, a requirement for Vpu during HIV-1 and murine leukaemia virus particle release. Furthermore, in cells where HIV-1 virion release requires Vpu expression, depletion of CD317 abolished this requirement. CD317 caused retention of virions on cell surfaces and, after endocytosis, in CD317-positive compartments. Vpu co-localized with CD317 and inhibited these effects. Inhibition of Vpu function and consequent mobilization of tetherin's antiviral activity is a potential therapeutic strategy in HIV/AIDS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer.

            Histologic grading of breast cancer defines morphologic subtypes informative of metastatic potential, although not without considerable interobserver disagreement and clinical heterogeneity particularly among the moderately differentiated grade 2 (G2) tumors. We posited that a gene expression signature capable of discerning tumors of grade 1 (G1) and grade 3 (G3) histology might provide a more objective measure of grade with prognostic benefit for patients with G2 disease. To this end, we studied the expression profiles of 347 primary invasive breast tumors analyzed on Affymetrix microarrays. Using class prediction algorithms, we identified 264 robust grade-associated markers, six of which could accurately classify G1 and G3 tumors, and separate G2 tumors into two highly discriminant classes (termed G2a and G2b genetic grades) with patient survival outcomes highly similar to those with G1 and G3 histology, respectively. Statistical analysis of conventional clinical variables further distinguished G2a and G2b subtypes from each other, but also from histologic G1 and G3 tumors. In multivariate analyses, genetic grade was consistently found to be an independent prognostic indicator of disease recurrence comparable with that of lymph node status and tumor size. When incorporated into the Nottingham prognostic index, genetic grade enhanced detection of patients with less harmful tumors, likely to benefit little from adjuvant therapy. Our findings show that a genetic grade signature can improve prognosis and therapeutic planning for breast cancer patients, and support the view that low- and high-grade disease, as defined genetically, reflect independent pathobiological entities rather than a continuum of cancer progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of rat mammary tumor volume using caliper and ultrasonography measurements.

              Mammary tumors similar to those observed in women can be induced in rats by intraperitoneal administration of N-methyl-N-nitrosourea. Determining tumor volume is a useful and quantitative way to monitor tumor progression. In this study, the authors measured dimensions of rat mammary tumors using a caliper and using real-time compound B-mode ultrasonography. They then used different formulas to calculate tumor volume from these tumor measurements and compared the calculated tumor volumes with the real tumor volume to identify the formulas that gave the most accurate volume calculations. They found that caliper and ultrasonography measurements were significantly correlated but that tumor volumes calculated using different formulas varied substantially. Mammary tumors seemed to take on an oblate spheroid geometry. The most accurate volume calculations were obtained using the formula V = (W(2) × L)/2 for caliper measurements and the formula V = (4/3) × π × (L/2) × (L/2) × (D/2) for ultrasonography measurements, where V is tumor volume, W is tumor width, L is tumor length and D is tumor depth.
                Bookmark

                Author and article information

                Contributors
                wadiedaniel-mahauadfernandez@uiowa.edu
                kris-demali@uiowa.edu
                aolivier@cvm.msstate.edu
                chioma-okeoma@uiowa.edu
                Journal
                Breast Cancer Res
                Breast Cancer Research : BCR
                BioMed Central (London )
                1465-5411
                1465-542X
                13 December 2014
                13 December 2014
                2014
                : 16
                : 6
                : 493
                Affiliations
                [ ]Department of Microbiology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109 USA
                [ ]Interdisciplinary Graduate Program in Molecular and Cellular Biology (MCB), University of Iowa, 500 Newton Road, Iowa City, IA 52242-1109 USA
                [ ]Department of Biochemistry, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109 USA
                [ ]Department of Pathology, Carver College of Medicine, University of Iowa, 51 Newton Road, Iowa City, IA 52242-1109 USA
                [ ]Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, 240 Wise Center Drive, Starkville, MS 39762-6100 USA
                Article
                493
                10.1186/s13058-014-0493-8
                4308845
                25499888
                eb320c05-abb9-4873-b55c-4580a4d0d268
                © Mahauad-Fernandez et al.; licensee BioMed Central. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 July 2014
                : 2 December 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article