1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      State of Climate Action 2022

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The State of Climate Action 2022 provides a comprehensive assessment of the global gap in climate action across the world’s highest-emitting systems, highlighting where recent progress made in reducing GHG emissions, scaling up carbon removal, and increasing climate finance must accelerate over the next decade to keep the Paris Agreement’s goal to limit warming to 1.5°C within reach.

          Related collections

          Most cited references288

          • Record: found
          • Abstract: found
          • Article: not found

          High-resolution global maps of 21st-century forest cover change.

          Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Changes in the global value of ecosystem services

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Primary forests are irreplaceable for sustaining tropical biodiversity.

              Human-driven land-use changes increasingly threaten biodiversity, particularly in tropical forests where both species diversity and human pressures on natural environments are high. The rapid conversion of tropical forests for agriculture, timber production and other uses has generated vast, human-dominated landscapes with potentially dire consequences for tropical biodiversity. Today, few truly undisturbed tropical forests exist, whereas those degraded by repeated logging and fires, as well as secondary and plantation forests, are rapidly expanding. Here we provide a global assessment of the impact of disturbance and land conversion on biodiversity in tropical forests using a meta-analysis of 138 studies. We analysed 2,220 pairwise comparisons of biodiversity values in primary forests (with little or no human disturbance) and disturbed forests. We found that biodiversity values were substantially lower in degraded forests, but that this varied considerably by geographic region, taxonomic group, ecological metric and disturbance type. Even after partly accounting for confounding colonization and succession effects due to the composition of surrounding habitats, isolation and time since disturbance, we find that most forms of forest degradation have an overwhelmingly detrimental effect on tropical biodiversity. Our results clearly indicate that when it comes to maintaining tropical biodiversity, there is no substitute for primary forests.
                Bookmark

                Author and article information

                Journal
                World Resources Institute
                WRIPUB
                World Resources Institute
                October 2022
                October 2022
                Article
                10.46830/wrirpt.22.00028
                eb0ab649-b862-4553-9af5-3b0a09d9364f
                © 2022
                History

                Comments

                Comment on this article