13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      First exploration of freestanding and flexible Na 2+2xFe 2−x(SO 4) 3@porous carbon nanofiber hybrid films with superior sodium intercalation for sodium ion batteries

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A freestanding Na 2+2xFe 2−x(SO 4) 3@PCNF hybrid film introduces a highly-efficient strategy for the mass-production of high-performance cathodes for SIBs.

          Abstract

          The design of a freestanding electrode is the key to the development of energy storage devices with superior electrochemical performance and mechanical durability. Herein, we propose a highly-scalable strategy for the facile synthesis of a freestanding alluaudite Na 2+2xFe 2−x(SO 4) 3@porous carbon-nanofiber hybrid film, which is used as a self-supported and flexible electrode for sodium ion batteries. By the combined use of electrospinning and electrospraying, the freestanding hybrid film is constructed in the form of sulfate nanoparticles enwrapped in highly porous graphitic-like carbon-nanofibers. The multimodal porous architecture of the freestanding hybrid film ensures its superiority in mechanical flexibility and structural stability during repeated electrochemical processes, which meets the long-standing challenge of practical application. Moreover, both the highly conductive and porous framework and the nanoscale particles are favorable for promoting fast electron/ion transport capability. Compared with other carbon based supports such as graphene (GA), carbon nanotubes (CNTs) and active carbons (ACs), the flexible carbon nanofiber shows better interaction with electrochemical active materials and superior electrochemical properties. It retains over 95% of the capacity after five hundred cycles at alternate rates of 40C and 5C, which demonstrates the superior ultralong time and high-rate cycling capability. Therefore, the present work provides a facile and highly scalable strategy for the design and fabrication of high-performance freestanding sulfate cathodes for advanced sodium ion batteries.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The Li-ion rechargeable battery: a perspective.

          Each cell of a battery stores electrical energy as chemical energy in two electrodes, a reductant (anode) and an oxidant (cathode), separated by an electrolyte that transfers the ionic component of the chemical reaction inside the cell and forces the electronic component outside the battery. The output on discharge is an external electronic current I at a voltage V for a time Δt. The chemical reaction of a rechargeable battery must be reversible on the application of a charging I and V. Critical parameters of a rechargeable battery are safety, density of energy that can be stored at a specific power input and retrieved at a specific power output, cycle and shelf life, storage efficiency, and cost of fabrication. Conventional ambient-temperature rechargeable batteries have solid electrodes and a liquid electrolyte. The positive electrode (cathode) consists of a host framework into which the mobile (working) cation is inserted reversibly over a finite solid-solution range. The solid-solution range, which is reduced at higher current by the rate of transfer of the working ion across electrode/electrolyte interfaces and within a host, limits the amount of charge per electrode formula unit that can be transferred over the time Δt = Δt(I). Moreover, the difference between energies of the LUMO and the HOMO of the electrolyte, i.e., electrolyte window, determines the maximum voltage for a long shelf and cycle life. The maximum stable voltage with an aqueous electrolyte is 1.5 V; the Li-ion rechargeable battery uses an organic electrolyte with a larger window, which increase the density of stored energy for a given Δt. Anode or cathode electrochemical potentials outside the electrolyte window can increase V, but they require formation of a passivating surface layer that must be permeable to Li(+) and capable of adapting rapidly to the changing electrode surface area as the electrode changes volume during cycling. A passivating surface layer adds to the impedance of the Li(+) transfer across the electrode/electrolyte interface and lowers the cycle life of a battery cell. Moreover, formation of a passivation layer on the anode robs Li from the cathode irreversibly on an initial charge, further lowering the reversible Δt. These problems plus the cost of quality control of manufacturing plague development of Li-ion rechargeable batteries that can compete with the internal combustion engine for powering electric cars and that can provide the needed low-cost storage of electrical energy generated by renewable wind and/or solar energy. Chemists are contributing to incremental improvements of the conventional strategy by investigating and controlling electrode passivation layers, improving the rate of Li(+) transfer across electrode/electrolyte interfaces, identifying electrolytes with larger windows while retaining a Li(+) conductivity σ(Li) > 10(-3) S cm(-1), synthesizing electrode morphologies that reduce the size of the active particles while pinning them on current collectors of large surface area accessible by the electrolyte, lowering the cost of cell fabrication, designing displacement-reaction anodes of higher capacity that allow a safe, fast charge, and designing alternative cathode hosts. However, new strategies are needed for batteries that go beyond powering hand-held devices, such as using electrode hosts with two-electron redox centers; replacing the cathode hosts by materials that undergo displacement reactions (e.g. sulfur) by liquid cathodes that may contain flow-through redox molecules, or by catalysts for air cathodes; and developing a Li(+) solid electrolyte separator membrane that allows an organic and aqueous liquid electrolyte on the anode and cathode sides, respectively. Opportunities exist for the chemist to bring together oxide and polymer or graphene chemistry in imaginative morphologies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Research development on sodium-ion batteries.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries

                Bookmark

                Author and article information

                Journal
                PPCPFQ
                Physical Chemistry Chemical Physics
                Phys. Chem. Chem. Phys.
                Royal Society of Chemistry (RSC)
                1463-9076
                1463-9084
                2016
                2016
                : 18
                : 38
                : 26933-26941
                Affiliations
                [1 ]Key Laboratory for Photonic and Electronic Bandgap Materials
                [2 ]Ministry of Education
                [3 ]College of Chemistry and Chemical Engineering
                [4 ]Harbin Normal University
                [5 ]Harbin
                [6 ]Key Laboratory of Superlight Material and Surface Technology
                [7 ]College of Material Science and Chemical Engineering
                [8 ]Harbin Engineering University
                [9 ]Harbin 150001
                Article
                10.1039/C6CP04958C
                eaf9b2a3-bf40-46ac-8cab-c2b832ed42a9
                © 2016
                History

                Comments

                Comment on this article