2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sirt1 Attenuates Astrocyte Activation Via Modulating Dnajb1 and Chaperone-Mediated Autophagy After Closed Head Injury

      1 , 1 , 1 , 1 , 1 , 1
      Cerebral Cortex
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our previous study indicates that Silent information regulator 1 (Sirt1) is involved in macroautophagy by upregulating light chain 3 (LC3) expression in astrocyte to exert a neuroprotective effect. Chaperon-mediated autophagy (CMA), another form of autophagy, is also upregulated after brain injury. However, little is known about the role of Sirt1 in regulation of the CMA. In the present study, an in vivo model of closed head injury (CHI) and an in vitro model of primary cortical astrocyte stimulated with interleukin-1β were employed to mimic the astrocyte activation induced by traumatic brain injury. Lentivirus carrying target complementary DNA (cDNA) or short hairpin RNA (shRNA) sequence was used to overexpress Sirt1 or knockdown DnaJ heat shock protein family member B1 (Dnajb1) (a molecular chaperone). We found that Sirt1 overexpression ameliorated neurological deficits, reduced tissue loss, and attenuated astrocyte activation after CHI, which was reversed by Dnajb1-shRNA administration. The upregulation of CMA activity induced by CHI in vivo and in vitro was inhibited after Dnajb1 knockdown. Sirt1 potently promoted CMA activity via upregulating Dnajb1 expression. Mechanically, Sirt1 could interact with Dnajb1 and modulate the deacetylation and ubiquitination of Dnajb1. These findings collectively suggest that Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the CMA activity via modulating the deacetylation and ubiquitination of Dnajb1 after CHI.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity of astrocyte functions and phenotypes in neural circuits.

          Astrocytes tile the entire CNS. They are vital for neural circuit function, but have traditionally been viewed as simple, homogenous cells that serve the same essential supportive roles everywhere. Here, we summarize breakthroughs that instead indicate that astrocytes represent a population of complex and functionally diverse cells. Physiological diversity of astrocytes is apparent between different brain circuits and microcircuits, and individual astrocytes display diverse signaling in subcellular compartments. With respect to injury and disease, astrocytes undergo diverse phenotypic changes that may be protective or causative with regard to pathology in a context-dependent manner. These new insights herald the concept that astrocytes represent a diverse population of genetically tractable cells that mediate neural circuit-specific roles in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The coming of age of chaperone-mediated autophagy

            Chaperone-mediated autophagy (CMA) was the first studied process that indicated that degradation of intracellular components by the lysosome can be selective — a concept that is now well accepted for other forms of autophagy. Lysosomes can degrade cellular cytosol in a nonspecific manner but can also discriminate what to target for degradation with the involvement of a degradation tag, a chaperone and a sophisticated mechanism to make the selected proteins cross the lysosomal membrane through a dedicated translocation complex. Recent studies modulating CMA activity in vivo using transgenic mouse models have demonstrated that selectivity confers on CMA the ability to participate in the regulation of multiple cellular functions. Timely degradation of specific cellular proteins by CMA modulates, for example, glucose and lipid metabolism, DNA repair, cellular reprograming and the cellular response to stress. These findings expand the physiological relevance of CMA beyond its originally identified role in protein quality control and reveal that CMA failure with age may aggravate diseases, such as ageing-associated neurodegeneration and cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chaperone-mediated autophagy: a unique way to enter the lysosome world.

              All cellular proteins undergo continuous synthesis and degradation. This permanent renewal is necessary to maintain a functional proteome and to allow rapid changes in levels of specific proteins with regulatory purposes. Although for a long time lysosomes were considered unable to contribute to the selective degradation of individual proteins, the discovery of chaperone-mediated autophagy (CMA) changed this notion. Here, we review the characteristics that set CMA apart from other types of lysosomal degradation and the subset of molecules that confer cells the capability to identify individual cytosolic proteins and direct them across the lysosomal membrane for degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Cerebral Cortex
                Oxford University Press (OUP)
                1047-3211
                1460-2199
                February 01 2022
                February 01 2022
                Affiliations
                [1 ]Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
                Article
                10.1093/cercor/bhac007
                35106540
                eaefbd48-405d-49ec-8135-c04a03aff1b0
                © 2022

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article