19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cloning and plant‐based production of antibody MC10E7 for a lateral flow immunoassay to detect [4‐arginine]microcystin in freshwater

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Antibody MC10E7 is one of a small number of monoclonal antibodies that bind specifically to [Arg4]‐microcystins, and it can be used to survey natural water sources and food samples for algal toxin contamination. However, the development of sensitive immunoassays in different test formats, particularly user‐friendly tests for on‐site analysis, requires a sensitive but also cost‐effective antibody. The original version of MC10E7 was derived from a murine hybridoma, but we determined the sequence of the variable regions using the peptide mass‐assisted cloning strategy and expressed a scFv (single‐chain variable fragment) format of this antibody in yeast and a chimeric full‐size version in leaves of Nicotiana tabacum and Nicotiana benthamiana to facilitate inexpensive and scalable production. The specific antigen‐binding activity of the purified antibody was verified by surface plasmon resonance spectroscopy and ELISA, confirming the same binding specificity as its hybridoma‐derived counterpart. The plant‐derived antibody was used to design a lateral flow immunoassay (dipstick) for the sensitive detection of [Arg4]‐microcystins at concentrations of 100–300 ng/L in freshwater samples collected at different sites. Plant‐based production will likely reduce the cost of the antibody, currently the most expensive component of the dipstick immunoassay, and will allow the development of further antibody‐based analytical devices and water purification adsorbents for the efficient removal of toxic contaminants.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.

          Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer.

            We have devised a simple and efficient cDNA cloning strategy that overcomes many of the difficulties encountered in obtaining full-length cDNA clones of low-abundance mRNAs. In essence, cDNAs are generated by using the DNA polymerase chain reaction technique to amplify copies of the region between a single point in the transcript and the 3' or 5' end. The minimum information required for this amplification is a single short stretch of sequence within the mRNA to be cloned. Since the cDNAs can be produced in one day, examined by Southern blotting the next, and readily cloned, large numbers of full-length cDNA clones of rare transcripts can be rapidly produced. Moreover, separation of amplified cDNAs by gel electrophoresis allows precise selection by size prior to cloning and thus facilitates the isolation of cDNAs representing variant mRNAs, such as those produced by alternative splicing or by the use of alternative promoters. The efficacy of this method was demonstrated by isolating cDNA clones of mRNA from int-2, a mouse gene that expresses four different transcripts at low abundance, the longest of which is approximately 2.9 kilobases. After less than 0.05% of the cDNAs produced had been screened, 29 independent int-2 clones were isolated. Sequence analysis demonstrated that the 3' and 5' ends of all four int-2 mRNAs were accurately represented by these clones.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions.

              Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.
                Bookmark

                Author and article information

                Contributors
                eva.stoeger@boku.ac.at
                Journal
                Plant Biotechnol J
                Plant Biotechnol. J
                10.1111/(ISSN)1467-7652
                PBI
                Plant Biotechnology Journal
                John Wiley and Sons Inc. (Hoboken )
                1467-7644
                1467-7652
                05 June 2017
                January 2018
                : 16
                : 1 ( doiID: 10.1111/pbi.2018.16.issue-1 )
                : 27-38
                Affiliations
                [ 1 ] Department of Applied Genetics and Cell Biology University of Natural Resources and Life Sciences Vienna Austria
                [ 2 ] Institute of Hydrochemistry and Chair for Analytical Chemistry Technical University Munich Munich Germany
                Author notes
                [*] [* ] Correspondence (Tel +43 147654 94111; fax +43 1 47654‐94009; email eva.stoeger@ 123456boku.ac.at )
                Article
                PBI12746
                10.1111/pbi.12746
                5785354
                28421663
                eae42b08-5a4c-4761-86dd-e6771804b0b1
                © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 06 December 2016
                : 14 March 2017
                : 12 April 2017
                Page count
                Figures: 5, Tables: 0, Pages: 12, Words: 10798
                Funding
                Funded by: Austrian Science Fund FWF
                Award ID: I1103
                Funded by: DFG
                Award ID: KN348/16‐1
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                pbi12746
                January 2018
                Converter:WILEY_ML3GV2_TO_NLMPMC version:version=5.3.1 mode:remove_FC converted:25.01.2018

                Biotechnology
                molecular farming,lateral flow immunoassay,plant‐made antibody,microcystin,water contamination

                Comments

                Comment on this article