4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Genetics in Diagnosis and Management of Hypertrophic Cardiomyopathy: A Glimpse into the Future

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy. It follows an autosomal dominant inheritance pattern in most cases, with incomplete penetrance and heterogeneity. It is familial in 60% of cases and most of these are caused by pathogenic variants in the core sarcomeric genes (MYH7, MYBPC3, TNNT2, TNNI3, MYL2, MYL3, TPM1, ACTC1). Genetic testing using targeted disease-specific panels that utilize next-generation sequencing (NGS) and include sarcomeric genes with the strongest evidence of association and syndrome-associated genes is highly recommended for every HCM patient to confirm the diagnosis, identify the molecular etiology, and guide screening and management. The yield of genetic testing for a disease-causing variant is 30% in sporadic cases and up to 60% in familial cases and in younger patients with typical asymmetrical septal hypertrophy. Genetic testing remains challenging in the interpretation of results and classification of variants. Therefore, in 2015 the American College of Medical Genetics and Genomics (ACMG) established guidelines to classify and interpret the variants with an emphasis on the necessity of periodic reassessment of variant classification as genetic knowledge rapidly expands. The current guidelines recommend focused cascade genetic testing regardless of age in phenotype-negative first-degree relatives if a variant with decisive evidence of pathogenicity has been identified in the proband. Genetic test results in family members guide longitudinal clinical surveillance. At present, there is emerging evidence for genetic test application in risk stratification and management but its implementation into clinical practice needs further study. Promising fields such as gene therapy and implementation of artificial intelligence in the diagnosis of HCM are emerging and paving the way for more effective screening and management, but many challenges and obstacles need to be overcome before establishing the practical implications of these new methods.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology

          The American College of Medical Genetics and Genomics (ACMG) previously developed guidance for the interpretation of sequence variants. 1 In the past decade, sequencing technology has evolved rapidly with the advent of high-throughput next generation sequencing. By adopting and leveraging next generation sequencing, clinical laboratories are now performing an ever increasing catalogue of genetic testing spanning genotyping, single genes, gene panels, exomes, genomes, transcriptomes and epigenetic assays for genetic disorders. By virtue of increased complexity, this paradigm shift in genetic testing has been accompanied by new challenges in sequence interpretation. In this context, the ACMG convened a workgroup in 2013 comprised of representatives from the ACMG, the Association for Molecular Pathology (AMP) and the College of American Pathologists (CAP) to revisit and revise the standards and guidelines for the interpretation of sequence variants. The group consisted of clinical laboratory directors and clinicians. This report represents expert opinion of the workgroup with input from ACMG, AMP and CAP stakeholders. These recommendations primarily apply to the breadth of genetic tests used in clinical laboratories including genotyping, single genes, panels, exomes and genomes. This report recommends the use of specific standard terminology: ‘pathogenic’, ‘likely pathogenic’, ‘uncertain significance’, ‘likely benign’, and ‘benign’ to describe variants identified in Mendelian disorders. Moreover, this recommendation describes a process for classification of variants into these five categories based on criteria using typical types of variant evidence (e.g. population data, computational data, functional data, segregation data, etc.). Because of the increased complexity of analysis and interpretation of clinical genetic testing described in this report, the ACMG strongly recommends that clinical molecular genetic testing should be performed in a CLIA-approved laboratory with results interpreted by a board-certified clinical molecular geneticist or molecular genetic pathologist or equivalent.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Target-enrichment strategies for next-generation sequencing.

            We have not yet reached a point at which routine sequencing of large numbers of whole eukaryotic genomes is feasible, and so it is often necessary to select genomic regions of interest and to enrich these regions before sequencing. There are several enrichment approaches, each with unique advantages and disadvantages. Here we describe our experiences with the leading target-enrichment technologies, the optimizations that we have performed and typical results that can be obtained using each. We also provide detailed protocols for each technology so that end users can find the best compromise between sensitivity, specificity and uniformity for their particular project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Genotype and Lifetime Burden of Disease in Hypertrophic Cardiomyopathy

              Supplemental Digital Content is available in the text.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                March 2024
                March 19 2024
                : 12
                : 3
                : 682
                Article
                10.3390/biomedicines12030682
                10968563
                38540296
                eae40745-c387-4b79-9a6c-a7f3fcbe0f30
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article