3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The treatment of Enterobacteriaceae family including diarrheagenic E. coli (DEC) has been increasingly complicated due to the emergence of resistant strains. Here we report on the phenotypic resistance profiles and ESBL genotype and virulence profiles of Enteroaggregative E. coli (EAEC) and Enteropathogenic E. coli (EPEC) isolated from children hospitalized with acute gastroenteritis in Qatar (AGE).

          Results

          E. coli were isolated and characterized from 76 diarrheagenic stool positive samples, collected from hospitalized children less than 10 years old. Isolates were tested for antibiotic susceptibility against eighteen clinically relevant antibiotics using E-test method. Conventional PCR was performed to detect genes encoding ESBL and virulence factors. Chi-square test was performed to compare the individual antibiotic resistance between EPEC and EAEC.

          A significant percentage (73.7%) of isolates were resistant to at least one antibiotic. Overall, high resistance (70%) was reported to the first-line antibiotics such as ampicillin, tetracycline (46.4%), and sulfamethoxazole-trimethoprim (42.9%). Further, 39.5% of the isolates were multidrug resistant (MDR), with 22.4% being ESBL producers. On the other hand, all isolates were susceptible to carbapenem, fosfomycin, amikacin and colistin. The incidences of resistance to the 18 antibiotics between EPEC and EAEC were not significantly different by Pearson chi -square test ( P > 0.05). Genetic analysis revealed that 88.23% of ESBL production was bla CTX-M-G1 ( bla CTX-M-15, bla CTX-M-3) - encoded. Several different combinations of virulence markers were observed, however, there was no specific trend among the isolates apart from absence of the bundle-forming pilus (bfpA) gene, which encodes the type IV fimbriae in EPEC adherence factor (EAF) plasmid (pEAF), among all EPEC (atypical). 15% of the EAEC strains were positive for a combination of astA, aap & capU, while 10% were positive for three different combinations. The aap, aatA, capU and aggR virulence genes showed the highest frequency of 65, 60, 55 and 55% respectively. Others genes, east, astA, and aai, showed frequencies of 35, 30 and 20% respectively.

          Conclusions

          Atypical EPEC and EAEC were the primary etiological agents of diarrhea in children among DEC pathotypes. Our results indicated high rate of antimicrobial resistance pattern of DEC strains, which necessities the development of regulatory programs and reporting systems of antimicrobial resistance in DEC and other AGE-associated bacteria to insure effective control of diarrheal diseases. Results from this study demand a further research on identifying the phenotypic and genotypic profiles of more DEC pathotypes in various clinical samples.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Extended-Spectrum β-Lactamases: a Clinical Update

          Extended-spectrum β-lactamases (ESBLs) are a rapidly evolving group of β-lactamases which share the ability to hydrolyze third-generation cephalosporins and aztreonam yet are inhibited by clavulanic acid. Typically, they derive from genes for TEM-1, TEM-2, or SHV-1 by mutations that alter the amino acid configuration around the active site of these β-lactamases. This extends the spectrum of β-lactam antibiotics susceptible to hydrolysis by these enzymes. An increasing number of ESBLs not of TEM or SHV lineage have recently been described. The presence of ESBLs carries tremendous clinical significance. The ESBLs are frequently plasmid encoded. Plasmids responsible for ESBL production frequently carry genes encoding resistance to other drug classes (for example, aminoglycosides). Therefore, antibiotic options in the treatment of ESBL-producing organisms are extremely limited. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBL-producing organisms may appear susceptible to some extended-spectrum cephalosporins. However, treatment with such antibiotics has been associated with high failure rates. There is substantial debate as to the optimal method to prevent this occurrence. It has been proposed that cephalosporin breakpoints for the Enterobacteriaceae should be altered so that the need for ESBL detection would be obviated. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards) provide guidelines for the detection of ESBLs in klebsiellae and Escherichia coli . In common to all ESBL detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic resistance mechanisms in the face of the introduction of new antimicrobial agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention.

            Over the past 10 years, dissemination of Klebsiella pneumoniae carbapenemase (KPC) has led to an increase in the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Infections caused by CRE have limited treatment options and have been associated with high mortality rates. In the previous year, other carbapenemase subtypes, including New Delhi metallo-β-lactamase, have been identified among Enterobacteriaceae in the United States. Like KPC, these enzymes are frequently found on mobile genetic elements and have the potential to spread widely. As a result, preventing both CRE transmission and CRE infections have become important public health objectives. This review describes the current epidemiology of CRE in the United States and highlights important prevention strategies. © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              10.321/eid0805.Typical and Atypical Enteropathogenic Escherichia coli

              Typical and atypical enteropathogenic Escherichia coli (EPEC) strains differ in several characteristics. Typical EPEC, a leading cause of infantile diarrhea in developing countries, is rare in industrialized countries, where atypical EPEC seems to be a more important cause of diarrhea. For typical EPEC, the only reservoir is humans; for atypical EPEC, both animals and humans can be reservoirs. Typical and atypical EPEC also differ in genetic characteristics, serotypes, and virulence properties. Atypical EPEC is more closely related to Shiga toxin–producing E. coli (STEC), and like STEC these strains appear to be emerging pathogens.
                Bookmark

                Author and article information

                Contributors
                hyassine@qu.edu.qa
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central (London )
                1471-2180
                6 March 2020
                6 March 2020
                2020
                : 20
                : 54
                Affiliations
                [1 ]GRID grid.412603.2, ISNI 0000 0004 0634 1084, Biomedical Research Center, , Qatar University, ; P.O. Box 2713, Doha, Qatar
                [2 ]GRID grid.412603.2, ISNI 0000 0004 0634 1084, College of Health Sciences, , Qatar University, QU Health, ; Doha, Qatar
                [3 ]GRID grid.413548.f, ISNI 0000 0004 0571 546X, Pediatrics Emergency Center, , Hamad Medical Corporation, ; Doha, Qatar
                [4 ]Emergency Medicine Department, Sidra Medicine, Doha, Qatar
                Article
                1732
                10.1186/s12866-020-01732-8
                7060563
                32143566
                eac7299f-b1ad-469c-b4c3-533e38576bbd
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 July 2019
                : 21 February 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100008982, Qatar National Research Fund;
                Award ID: NPRP9-133-1-025‎
                Funded by: FundRef http://dx.doi.org/10.13039/501100004252, Qatar University;
                Award ID: QUCG-BRC-19/20-1‎
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Microbiology & Virology
                antibiotic resistance,dec,epec,eaec,esbl,mdr,virulence
                Microbiology & Virology
                antibiotic resistance, dec, epec, eaec, esbl, mdr, virulence

                Comments

                Comment on this article