11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Blood Testis Barrier and Somatic Cells Impairment in a Series of 35 Adult Klinefelter Syndrome Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Klinefelter Syndrome (KS) is the most common genetic cause of infertility in men. Degeneration of the testicular tissue starts in utero and accelerates at puberty with hyalinisation of seminiferous tubules, spermatogonia apoptosis and germ cell maturation arrest. Therefore, fertility preservation in young KS boys has been proposed, although this measure is still debated due to insufficient knowledge of the pathophysiology of the disease. To better understand the underlying mechanisms of testicular failure and germ cell loss, we analysed functional and morphological alterations in the somatic compartment of KS testis, i.e., Sertoli cells, including the blood–testis barrier (BTB) and Leydig cells (LC). We compared three populations: 35 KS 47,XXY non-mosaic patients, 28 Sertoli-cell-only (SCO) syndrome patients and 9 patients with normal spermatogenesis. In KS patients the expression of BTB proteins connexin-43 and claudin-11 assessed with a semi-quantitative scoring system appeared significantly reduced with a disorganised pattern. A significant reduction in seminiferous tubules expressing androgen receptors (AR) was observed in KS compared to normal spermatogenesis controls. INSL3 expression, a marker of LC maturation, was also significantly reduced in KS compared to patients with normal spermatogenesis or SCO. Hence, the somatic compartment impairment in KS could be involved in degeneration of seminiferous tubules.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study.

          The objective of this study was to describe the prevalence of Klinefelter syndrome (KS) prenatally and postnatally in Denmark and determine the influence of maternal age. All chromosomal examinations in Denmark are registered in the Danish Cytogenetic Central Registry. Individuals with KS diagnosed prenatally or postnatally were extracted from the registry with information about age at the time of diagnosis and mother's age. In the period 1970-2000, 76,526 prenatal examinations on male fetuses resulted in the diagnosis of 163 fetuses with KS karyotype, corresponding to a prevalence of 213 per 100,000 male fetuses. Standardization according to maternal age resulted in a prevalence of 153 per 100,000 males. Postnatally, 696 males of 2,480,858 live born were diagnosed with KS, corresponding to a prevalence among adult men of approximately 40 per 100,000. Less than 10% of the expected number was diagnosed before puberty. Advanced maternal age had a significant impact on the prevalence. KS is severely underdiagnosed in Denmark. Only approximately one fourth of adult males with KS are diagnosed. There is a marked delay in diagnosis of the syndrome. A delay in treatment with testosterone may lead to decreased muscle and bone mass with subsequent risk of osteoporosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis.

            Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Connexin channel permeability to cytoplasmic molecules.

              Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made approximately 30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly, expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex--30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: what specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                14 November 2019
                November 2019
                : 20
                : 22
                : 5717
                Affiliations
                [1 ]Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium; maria.giudice@ 123456uclouvain.be
                [2 ]Gynecology-Andrology Research Unit, Institut de Recherche Expérimentale et Clinique, Medical School, Université Catholique de Louvain, 1200 Brussels, Belgium; m.vermeulen@ 123456uclouvain.be
                Author notes
                [* ]Correspondence: christine.wyns@ 123456uclouvain.be ; Tel.: +32-2-764-21-22
                Author information
                https://orcid.org/0000-0002-6581-5003
                Article
                ijms-20-05717
                10.3390/ijms20225717
                6888948
                31739598
                eaa5330c-0859-41e8-84b5-fbc159893503
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 02 October 2019
                : 12 November 2019
                Categories
                Article

                Molecular biology
                klinefelter syndrome,fertility preservation,blood–testis barrier,sertoli cells,leydig cells

                Comments

                Comment on this article