63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Social encounter networks: collective properties and disease transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A fundamental challenge of modern infectious disease epidemiology is to quantify the networks of social and physical contacts through which transmission can occur. Understanding the collective properties of these interactions is critical for both accurate prediction of the spread of infection and determining optimal control measures. However, even the basic properties of such networks are poorly quantified, forcing predictions to be made based on strong assumptions concerning network structure. Here, we report on the results of a large-scale survey of social encounters mainly conducted in Great Britain. First, we characterize the distribution of contacts, which possesses a lognormal body and a power-law tail with an exponent of −2.45; we provide a plausible mechanistic model that captures this form. Analysis of the high level of local clustering of contacts reveals additional structure within the network, implying that social contacts are degree assortative. Finally, we describe the epidemiological implications of this local network structure: these contradict the usual predictions from networks with heavy-tailed degree distributions and contain public-health messages about control. Our findings help us to determine the types of realistic network structure that should be assumed in future population level studies of infection transmission, leading to better interpretations of epidemiological data and more appropriate policy decisions.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Emergence of scaling in random networks

          Systems as diverse as genetic networks or the world wide web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature is found to be a consequence of the two generic mechanisms that networks expand continuously by the addition of new vertices, and new vertices attach preferentially to already well connected sites. A model based on these two ingredients reproduces the observed stationary scale-free distributions, indicating that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemic spreading in scale-free networks

            The Internet, as well as many other networks, has a very complex connectivity recently modeled by the class of scale-free networks. This feature, which appears to be very efficient for a communications network, favors at the same time the spreading of computer viruses. We analyze real data from computer virus infections and find the average lifetime and prevalence of viral strains on the Internet. We define a dynamical model for the spreading of infections on scale-free networks, finding the absence of an epidemic threshold and its associated critical behavior. This new epidemiological framework rationalize data of computer viruses and could help in the understanding of other spreading phenomena on communication and social networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The spread of behavior in an online social network experiment.

              How do social networks affect the spread of behavior? A popular hypothesis states that networks with many clustered ties and a high degree of separation will be less effective for behavioral diffusion than networks in which locally redundant ties are rewired to provide shortcuts across the social space. A competing hypothesis argues that when behaviors require social reinforcement, a network with more clustering may be more advantageous, even if the network as a whole has a larger diameter. I investigated the effects of network structure on diffusion by studying the spread of health behavior through artificially structured online communities. Individual adoption was much more likely when participants received social reinforcement from multiple neighbors in the social network. The behavior spread farther and faster across clustered-lattice networks than across corresponding random networks.
                Bookmark

                Author and article information

                Journal
                J R Soc Interface
                J R Soc Interface
                RSIF
                royinterface
                Journal of the Royal Society Interface
                The Royal Society
                1742-5689
                1742-5662
                7 November 2012
                20 June 2012
                20 June 2012
                : 9
                : 76
                : 2826-2833
                Affiliations
                [1 ]Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
                [2 ]School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
                [3 ]Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Neston CH64 7TE, UK
                Author notes
                [* ]Author for correspondence ( m.j.keeling@ 123456warwick.ac.uk ).
                Article
                rsif20120357
                10.1098/rsif.2012.0357
                3479920
                22718990
                ea965106-9da8-4762-bdeb-b3b0062a06db
                This Journal is © 2012 The Royal Society

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 May 2012
                : 31 May 2012
                Categories
                1004
                24
                181
                Research Articles

                Life sciences
                power law,epidemic,infectious disease,survey,social contact
                Life sciences
                power law, epidemic, infectious disease, survey, social contact

                Comments

                Comment on this article