0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of phytase supplementation on broilers fed with calcium and phosphorus-reduced diets, challenged with Eimeria maxima and Eimeria acervulina: influence on growth performance, body composition, bone health, and intestinal integrity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An experiment was conducted to evaluate the effects of phytase in calcium (Ca) and available phosphorous ( avP)-reduced diet on growth performance, body composition, bone health, and intestinal integrity of broilers challenged with Eimeria maxima and Eimeria acervulina. A total of 672 14-day-old male broilers were allocated to a 2 × 4 factorial arrangement with 6 replicates per treatment and 14 birds per replicate. Two factors were Eimeria challenge and 4 dietary treatments: 1) a positive control ( PC; 0.84% Ca and 0.42% avP); 2) a negative control ( NC; 0.74% Ca and 0.27% avP); 3) NC + 500 FTU/Kg of phytase ( NC + 500PHY); and 4) NC + 1,500 FTU/Kg of phytase ( NC + 1500PHY). On d 14, birds in the Eimeria-challenged groups received a solution containing 15,000 sporulated oocysts of E. maxima and 75,000 sporulated oocysts of E. acervulina via oral gavage. At 5 d postinoculation ( DPI), the challenged birds showed a higher ( P < 0.01) FITC-d level than the unchallenged birds. While the permeability of the NC group did not differ from the PC group, the phytase supplementation groups (NC + 500PHY and NC + 1500PHY) showed lower ( P < 0.05) serum FITC-d levels compared to the NC group. Interaction effects ( P < 0.05) of Eimeria challenge and dietary treatments on feed intake ( FI), mucin-2 ( MUC2) gene expression, bone ash concentration, and mineral apposition rate ( MAR) were observed. On 0 to 6 and 0 to 9 DPI, Eimeria challenge decreased ( P < 0.01) body weight ( BW), body weight gain ( BWG), FI, bone mineral density ( BMD), bone mineral content ( BMC), bone area, fat free bone weight ( FFBW), bone ash weight, bone ash percentage and bone ash concentration; and it showed a higher FCR ( P < 0.01) compared to the unchallenged group. The reduction Ca and avP in the diet (NC) did not exert adverse effects on all parameters in birds, and supplementing phytase at levels of 500 or 1,500 FTU/Kg improved body composition, bone mineralization, and intestinal permeability, with the higher dose of 1,500 FTU/Kg showing more pronounced enhancements. There was an observed increase in FI ( P < 0.01) when phytase was supplemented at 1,500 FTU/Kg during 0 to 6 DPI. In conclusion, results from the current study suggest that dietary nutrients, such as Ca and avP, can be moderately reduced with the supplementation of phytase, particularly in birds infected with Eimeria spp., which has the potential to save feed cost without compromising growth performance, bone health, and intestinal integrity of broilers.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anticoccidial drugs: lesion scoring techniques in battery and floor-pen experiments with chickens.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens

              Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                01 February 2024
                April 2024
                01 February 2024
                : 103
                : 4
                : 103511
                Affiliations
                [* ]Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
                []Department of Poultry Science, Auburn University, Auburn, AL, 36849, USA
                []US National Poultry Research Center, United States Department of Agriculture Agricultural Research Service, Athens, GA, 30605, USA
                Author notes
                [1 ]Corresponding author. wkkim@ 123456uga.edu
                Article
                S0032-5791(24)00090-7 103511
                10.1016/j.psj.2024.103511
                10869301
                38340661
                ea93a4ed-c396-4245-88b9-5f5a2b377f10
                © 2024 Published by Elsevier Inc. on behalf of Poultry Science Association Inc.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 December 2023
                : 24 January 2024
                Categories
                METABOLISM AND NUTRITION

                coccidiosis,phytase,broiler,growth performance,bone and intestinal health

                Comments

                Comment on this article