1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Audiovisual incongruence differentially impacts left and right hemisphere sensorimotor oscillations: Potential applications to production

      research-article
      *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Speech production gives rise to distinct auditory and somatosensory feedback signals which are dynamically integrated to enable online monitoring and error correction, though it remains unclear how the sensorimotor system supports the integration of these multimodal signals. Capitalizing on the parity of sensorimotor processes supporting perception and production, the current study employed the McGurk paradigm to induce multimodal sensory congruence/incongruence. EEG data from a cohort of 39 typical speakers were decomposed with independent component analysis to identify bilateral mu rhythms; indices of sensorimotor activity. Subsequent time-frequency analyses revealed bilateral patterns of event related desynchronization (ERD) across alpha and beta frequency ranges over the time course of perceptual events. Right mu activity was characterized by reduced ERD during all cases of audiovisual incongruence, while left mu activity was attenuated and protracted in McGurk trials eliciting sensory fusion. Results were interpreted to suggest distinct hemispheric contributions, with right hemisphere mu activity supporting a coarse incongruence detection process and left hemisphere mu activity reflecting a more granular level of analysis including phonological identification and incongruence resolution. Findings are also considered in regard to incongruence detection and resolution processes during production.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: not found
          • Article: not found

          The assessment and analysis of handedness: The Edinburgh inventory

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data

            This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonparametric statistical testing of EEG- and MEG-data.

              In this paper, we show how ElectroEncephaloGraphic (EEG) and MagnetoEncephaloGraphic (MEG) data can be analyzed statistically using nonparametric techniques. Nonparametric statistical tests offer complete freedom to the user with respect to the test statistic by means of which the experimental conditions are compared. This freedom provides a straightforward way to solve the multiple comparisons problem (MCP) and it allows to incorporate biophysically motivated constraints in the test statistic, which may drastically increase the sensitivity of the statistical test. The paper is written for two audiences: (1) empirical neuroscientists looking for the most appropriate data analysis method, and (2) methodologists interested in the theoretical concepts behind nonparametric statistical tests. For the empirical neuroscientist, a large part of the paper is written in a tutorial-like fashion, enabling neuroscientists to construct their own statistical test, maximizing the sensitivity to the expected effect. And for the methodologist, it is explained why the nonparametric test is formally correct. This means that we formulate a null hypothesis (identical probability distribution in the different experimental conditions) and show that the nonparametric test controls the false alarm rate under this null hypothesis.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SoftwareRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS One
                plos
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                7 October 2021
                2021
                : 16
                : 10
                : e0258335
                Affiliations
                [001] Department of Speech and Hearing Sciences, Washington State University, Spokane, Washington, United States of America
                University of New England, AUSTRALIA
                Author notes

                Competing Interests: The author has declared that no competing interests exist.

                Author information
                https://orcid.org/0000-0001-5744-0910
                Article
                PONE-D-20-40636
                10.1371/journal.pone.0258335
                8496780
                34618866
                ea848c3b-8abd-4d71-935a-74286257148c
                © 2021 David Jenson

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 December 2020
                : 26 September 2021
                Page count
                Figures: 5, Tables: 1, Pages: 28
                Funding
                The author received no specific funding for this work.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Perception
                Sensory Perception
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Perception
                Sensory Perception
                Social Sciences
                Psychology
                Cognitive Psychology
                Perception
                Sensory Perception
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Engineering and Technology
                Signal Processing
                Speech Signal Processing
                Biology and Life Sciences
                Anatomy
                Brain
                Cerebral Hemispheres
                Right Hemisphere
                Medicine and Health Sciences
                Anatomy
                Brain
                Cerebral Hemispheres
                Right Hemisphere
                Biology and Life Sciences
                Anatomy
                Brain
                Cerebral Hemispheres
                Left Hemisphere
                Medicine and Health Sciences
                Anatomy
                Brain
                Cerebral Hemispheres
                Left Hemisphere
                Physical Sciences
                Physics
                Acoustics
                Acoustic Signals
                Biology and Life Sciences
                Neuroscience
                Cognitive Science
                Cognitive Psychology
                Perception
                Sensory Perception
                Vision
                Biology and Life Sciences
                Psychology
                Cognitive Psychology
                Perception
                Sensory Perception
                Vision
                Social Sciences
                Psychology
                Cognitive Psychology
                Perception
                Sensory Perception
                Vision
                Biology and Life Sciences
                Neuroscience
                Sensory Perception
                Vision
                Social Sciences
                Linguistics
                Speech
                Social Sciences
                Linguistics
                Grammar
                Phonology
                Custom metadata
                The data underlying this study are available on Harvard Dataverse ( https://doi.org/10.7910/DVN/PX8PND).

                Uncategorized
                Uncategorized

                Comments

                Comment on this article