0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Morphological classification of galaxies with deep learning: comparing 3-way and 4-way CNNs

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Classifying the morphologies of galaxies is an important step in understanding their physical properties and evolutionary histories. The advent of large-scale surveys has hastened the need to develop techniques for automated morphological classification. We train and test several convolutional neural network (CNN) architectures to classify the morphologies of galaxies in both a 3-class (elliptical, lenticular, and spiral) and a 4-class (+irregular/miscellaneous) schema with a data set of 14 034 visually classified SDSS images. We develop a new CNN architecture that outperforms existing models in both 3-way and 4-way classifications, with overall classification accuracies of 83 and 81 per cent, respectively. We also compare the accuracies of 2-way/binary classifications between all four classes, showing that ellipticals and spirals are most easily distinguished (>98 per cent accuracy), while spirals and irregulars are hardest to differentiate (78 per cent accuracy). Through an analysis of all classified samples, we find tentative evidence that misclassifications are physically meaningful, with lenticulars misclassified as ellipticals tending to be more massive, among other trends. We further combine our binary CNN classifiers to perform a hierarchical classification of samples, obtaining comparable accuracies (81 per cent) to the direct 3-class CNN, but considerably worse accuracies in the 4-way case (65 per cent). As an additional verification, we apply our networks to a small sample of Galaxy Zoo images, obtaining accuracies of 92, 82, and 77 per cent for the binary, 3-way, and 4-way classifications, respectively.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Deep learning.

          Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gradient-based learning applied to document recognition

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Gasdynamics and Starbursts in Major Mergers

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Monthly Notices of the Royal Astronomical Society
                Oxford University Press (OUP)
                0035-8711
                1365-2966
                September 2021
                July 08 2021
                September 2021
                July 08 2021
                June 02 2021
                : 506
                : 1
                : 659-676
                Affiliations
                [1 ]ICRAR M468, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
                [2 ]Research School of Astronomy and Astrophysics (RSAA), Australian National University, Canberra, ACT 2611, Australia
                Article
                10.1093/mnras/stab1552
                ea4ffc6c-4ef1-4177-8853-183a2e49dafd
                © 2021

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article