0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Porous scaffold made from collagen and liposomes coated with plant derived polysaccharide - in vivo study

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery.

          The successful delivery of therapeutic genes to the designated target cells and their availability at the intracellular site of action are crucial requirements for successful gene therapy. Nonviral gene delivery is currently a subject of increasing attention because of its relative safety and simplicity of use; however, its use is still far from being ideal because of its comparatively low efficiency. Most of the currently available nonviral gene vectors rely on two main components, cationic lipids and cationic polymers, and a variety of functional devices can be added to further optimize the systems. The design of these functional devices depends mainly on our understanding of the mechanisms involved in the cellular uptake and intracellular disposition of the therapeutic genes as well as their carriers. Macromolecules are internalized into cells by a variety of mechanisms, and their intracellular fate is usually linked to the entry mechanism. Therefore, the successful design of a nonviral gene delivery system requires a deep understanding of gene/carrier interactions as well as the mechanisms involved in the interaction of the systems with the target cells. In this article, we review the different uptake pathways that are involved in nonviral gene delivery from a gene delivery point of view. In addition, available knowledge concerning cellular entry and the intracellular trafficking of cationic lipid-DNA complexes (lipoplexes) and cationic polymer-DNA complexes (polyplexes) is summarized.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects.

            To review the literature on herbal preparations commonly utilized in the treatment of rheumatic indications. Search of MEDLINE (PubMed) was performed using both the scientific and the common names of herbs. Relevant articles in English were collected from PubMed and reviewed. This review summarizes the efficacy and toxicities of herbal remedies used in complementary and alternative medical (CAM) therapies for rheumatologic conditions, by elucidating the immune pathways through which these preparations have antiinflammatory and/or immunomodulatory activity and providing a scientific basis for their efficacy. Gammalinolenic acid suppresses inflammation by acting as a competitive inhibitor of prostaglandin E2 and leukotrienes (LTs) and by reducing the auto-induction of interleukin1alpha (IL-1alpha)-induced pro-IL-1beta gene expression. It appears to be efficacious in rheumatoid arthritis (RA) but not for Sjogrens disease. The antiinflammatory actions of Harpagophytum procumbens is due to its action on eicosanoid biosynthesis and it may have a role in treating low back pain. While in vitro experiments with Tanacetum parthenium found inhibition of the expression of intercellular adhesion molecule-1, tumor necrosis factor alpha (TNF-alpha), interferon-gamma, IkappaB kinase, and a decrease in T-cell adhesion, to date human studies have not proven it useful in the treatment of RA. Current experience with Tripterygium wilfordii Hook F, Uncaria tomentosa, finds them to be efficacious in the treatment of RA, while Urtica diocia and willow bark extract are effective for osteoarthritis. T. wilfordii Hook F extract inhibits the production of cytokines and other mediators from mononuclear phagocytes by blocking the up-regulation of a number of proinflammatory genes, including TNF-alpha, cyclooxygenase 2 (COX-2), interferon-gamma, IL-2, prostaglandin, and iNOS. Uncaria tomentosa and Urtica diocia both decrease the production of TNF-alpha. At present there are no human studies on Ocimum spp. in rheumatic diseases. The fixed oil appears to have antihistaminic, antiserotonin, and antiprostaglandin activity. Zingiber officinale inhibits TNF-alpha, prostaglandin, and leukotriene synthesis and at present has limited efficacy in the treatment of osteoarthritis. Investigation of the mechanism and potential uses of CAM therapies is still in its infancy and many studies done to date are scientifically flawed. Further systematic and scientific inquiry into this topic is necessary to validate or refute the clinical claims made for CAM therapies. An understanding of the mechanism of action of CAM therapies allows physicians to counsel effectively on their proper and improper use, prevent adverse drug-drug interactions, and anticipate or appreciate toxicities. The use of CAM therapies is widespread among patients, including those with rheumatic diseases. Herbal medications are often utilized with little to no physician guidance or knowledge. An appreciation of this information will help physicians to counsel patients concerning the utility and toxicities of CAM therapies. An understanding and elucidation of the mechanisms by which CAM therapies may be efficacious can be instrumental in discovering new molecular targets in the treatment of diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Liposomes in the treatment of inflammatory disorders.

              This review focuses on the therapeutic utility of liposomes in the treatment of inflammatory disorders, and aims to offer the reader an overview of the in vivo results obtained with liposomally encapsulated anti-inflammatory and immune suppressive drugs. The past 30 years has clearly indicated the added value of liposomes in the search for solutions for the delivery problems encountered. However, only a few liposomal anti-inflammatory therapeutics have entered the clinic. Reasons for the hurdles existing in the translation of promising preclinical findings to clinical studies are discussed.
                Bookmark

                Author and article information

                Journal
                applab
                MRS Proceedings
                MRS Proc.
                Cambridge University Press (CUP)
                1946-4274
                January 2012
                March 2012
                : 1376
                :
                Article
                10.1557/opl.2012.276
                ea3401b2-645d-4f64-b575-483085e3b1ef
                © 2012
                History

                Comments

                Comment on this article