1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Spinal cord lesions and brain grey matter atrophy independently predict clinical worsening in definite multiple sclerosis: a 5-year, multicentre study

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          To evaluate the combined contribution of brain and cervical cord damage in predicting 5-year clinical worsening in a multicentre cohort of definite multiple sclerosis (MS) patients.

          Methods

          Baseline 3.0T brain and cervical cord T2-weighted and three-dimensional T1-weighted MRI was acquired in 367 patients with MS (326 relapse-onset and 41 progressive-onset) and 179 healthy controls. Expanded Disability Status Scale (EDSS) score was obtained at baseline and after a median follow-up of 5.1 years (IQR=4.8–5.2). At follow-up, patients were classified as clinically stable/worsened according to EDSS changes. Generalised linear mixed models identified predictors of clinical worsening, evolution to secondary progressive (SP) MS and reaching EDSS=3.0, 4.0 and 6.0 milestones at 5 years.

          Results

          At follow-up, 120/367 (33%) patients with MS worsened clinically; 36/256 (14%) patients with relapsing–remitting evolved to SPMS. Baseline predictors of EDSS worsening were progressive-onset versus relapse-onset MS (standardised beta (β)=0.97), higher EDSS (β=0.41), higher cord lesion number (β=0.41), lower normalised cortical volume (β=−0.15) and lower cord area (β=−0.28) (C-index=0.81). Older age (β=0.86), higher EDSS (β=1.40) and cord lesion number (β=0.87) independently predicted SPMS conversion (C-index=0.91). Predictors of reaching EDSS=3.0 after 5 years were higher baseline EDSS (β=1.49), cord lesion number (β=1.02) and lower normalised cortical volume (β=−0.56) (C-index=0.88). Baseline age (β=0.30), higher EDSS (β=2.03), higher cord lesion number (β=0.66) and lower cord area (β=−0.41) predicted EDSS=4.0 (C-index=0.92). Finally, higher baseline EDSS (β=1.87) and cord lesion number (β=0.54) predicted EDSS=6.0 (C-index=0.91).

          Conclusions

          Spinal cord damage and, to a lesser extent, cortical volume loss helped predicting worse 5-year clinical outcomes in MS.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS).

          J. Kurtzke (1983)
          One method of evaluating the degree of neurologic impairment in MS has been the combination of grades (0 = normal to 5 or 6 = maximal impairment) within 8 Functional Systems (FS) and an overall Disability Status Scale (DSS) that had steps from 0 (normal) to 10 (death due to MS). A new Expanded Disability Status Scale (EDSS) is presented, with each of the former steps (1,2,3 . . . 9) now divided into two (1.0, 1.5, 2.0 . . . 9.5). The lower portion is obligatorily defined by Functional System grades. The FS are Pyramidal, Cerebellar, Brain Stem, Sensory, Bowel & Bladder, Visual, Cerebral, and Other; the Sensory and Bowel & Bladder Systems have been revised. Patterns of FS and relations of FS by type and grade to the DSS are demonstrated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple sclerosis

            Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system in young adults. This disorder is a heterogeneous, multifactorial, immune-mediated disease that is influenced by both genetic and environmental factors. In most patients, reversible episodes of neurological dysfunction lasting several days or weeks characterize the initial stages of the disease (that is, clinically isolated syndrome and relapsing-remitting MS). Over time, irreversible clinical and cognitive deficits develop. A minority of patients have a progressive disease course from the onset. The pathological hallmark of MS is the formation of demyelinating lesions in the brain and spinal cord, which can be associated with neuro-axonal damage. Focal lesions are thought to be caused by the infiltration of immune cells, including T cells, B cells and myeloid cells, into the central nervous system parenchyma, with associated injury. MS is associated with a substantial burden on society owing to the high cost of the available treatments and poorer employment prospects and job retention for patients and their caregivers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deep gray matter volume loss drives disability worsening in multiple sclerosis

              Objective Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. Methods We analyzed 3,604 brain high‐resolution T1‐weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing‐remitting [RRMS], 128 secondary‐progressive [SPMS], and 125 primary‐progressive [PPMS]), over an average follow‐up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow‐up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time‐to‐EDSS progression. Results SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time‐to‐EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow‐up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (–1.45%), PPMS (–1.66%), and RRMS (–1.34%) than CIS (–0.88%) and HCs (–0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (–1.21%) was significantly faster than RRMS (–0.76%), CIS (–0.75%), and HCs (–0.51%). Similarly, the rate of parietal GM atrophy in SPMS (–1.24‐%) was faster than CIS (–0.63%) and HCs (–0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). Interpretation This large, multicenter and longitudinal study shows that DGM volume loss drives disability accumulation in MS, and that temporal cortical GM shows accelerated atrophy in SPMS than RRMS. The difference in regional GM atrophy development between phenotypes needs to be taken into account when evaluating treatment effect of therapeutic interventions. Ann Neurol 2018;83:210–222
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Neurology, Neurosurgery & Psychiatry
                J Neurol Neurosurg Psychiatry
                BMJ
                0022-3050
                1468-330X
                December 14 2022
                January 2023
                January 2023
                September 28 2022
                : 94
                : 1
                : 10-18
                Article
                10.1136/jnnp-2022-329854
                36171105
                ea264e24-5325-4b40-baa0-04c3f8e24730
                © 2022
                History

                Comments

                Comment on this article