5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activatable Fluorophores for Imaging Immune Cell Function

      research-article
      ,
      Accounts of Chemical Research
      American Chemical Society

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Conspectus

          Optical imaging has become an essential tool to study biomolecular processes in live systems with unprecedented spatial resolution. New fluorescent technologies and advances in optical microscopy have revolutionized the ways in which we can study immune cells in real time. For example, activatable fluorophores that emit signals after target recognition have enabled direct imaging of immune cell function with enhanced readouts and minimal background. In this Account, we summarize recent advances in the chemical synthesis and implementation of activatable fluorescent probes to monitor the activity and the role of immune cells in different pathological processes, from infection to inflammatory diseases or cancer. In addition to the contributions that our group has made to this field, we review the most relevant literature disclosed over the past decade, providing examples of different activatable architectures and their application in diagnostics and drug discovery. This Account covers the imaging of the three major cell types in the immune system, that is, neutrophils, macrophages, and lymphocytes. Attracted by the tunability and target specificity of peptides, many groups have designed strategies based on fluorogenic peptides whose fluorescence emission is regulated by the reaction with enzymes (e.g., MMPs, cathepsins, granzymes), or through Förster resonance energy transfer (FRET) mechanisms. Selective imaging of immune cells has been also achieved by targeting different intracellular metabolic routes, such as lipid biogenesis. Other approaches involve the implementation of diversity-oriented fluorescence libraries or the use of environmentally sensitive fluorescent scaffolds (e.g., molecular rotors). Our group has made important progress by constructing probes to image metastasis-associated macrophages in tumors, apoptotic neutrophils, or cytotoxic natural killer (NK) cells against cancer cells, among other examples. The chemical probes covered in this Account have been successfully validated in vitro in cell culture systems, and in vivo in relevant models of inflammation and cancer. Overall, the range of chemical structures and activation mechanisms reported to sense immune cell function is remarkable. However, the emergence of new strategies based on new molecular targets or activatable mechanisms that are yet to be discovered will open the door to track unexplored roles of immune cells in different biological systems. We anticipate that upcoming generations of activatable probes will find applications in the clinic to help assessing immunotherapies and advance precision medicine. We hope that this Account will evoke new ideas and innovative work in the design of fluorescent probes for imaging cell function.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps in COVID-19

          In severe cases of coronavirus disease 2019 (COVID-19), viral pneumonia progresses to respiratory failure. Neutrophil extracellular traps (NETs) are extracellular webs of chromatin, microbicidal proteins, and oxidant enzymes that are released by neutrophils to contain infections. However, when not properly regulated, NETs have the potential to propagate inflammation and microvascular thrombosis — including in the lungs of patients with acute respiratory distress syndrome. We now report that sera from patients with COVID-19 have elevated levels of cell-free DNA, myeloperoxidase-DNA (MPO-DNA), and citrullinated histone H3 (Cit-H3); the latter 2 are specific markers of NETs. Highlighting the potential clinical relevance of these findings, cell-free DNA strongly correlated with acute-phase reactants, including C-reactive protein, D-dimer, and lactate dehydrogenase, as well as absolute neutrophil count. MPO-DNA associated with both cell-free DNA and absolute neutrophil count, while Cit-H3 correlated with platelet levels. Importantly, both cell-free DNA and MPO-DNA were higher in hospitalized patients receiving mechanical ventilation as compared with hospitalized patients breathing room air. Finally, sera from individuals with COVID-19 triggered NET release from control neutrophils in vitro. Future studies should investigate the predictive power of circulating NETs in longitudinal cohorts and determine the extent to which NETs may be novel therapeutic targets in severe COVID-19. Serum levels of neutrophil extracellular traps identify COVID-19 patients with more severe respiratory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice

            Cancer cells from a primary tumor can disseminate to other tissues, remaining dormant and clinically undetectable for many years. Little is known about the cues that cause these dormant cells to awaken, resume proliferating, and develop into metastases. Studying mouse models, we found that sustained lung inflammation caused by tobacco smoke exposure or nasal instillation of lipopolysaccharide converted disseminated, dormant cancer cells to aggressively growing metastases. Sustained inflammation induced the formation of neutrophil extracellular traps (NETs), and these were required for awakening dormant cancer. Mechanistic analysis revealed that two NET-associated proteases, neutrophil elastase and matrix metalloproteinase 9, sequentially cleaved laminin. The proteolytically remodeled laminin induced proliferation of dormant cancer cells by activating integrin α3β1 signaling. Antibodies against NET-remodeled laminin prevented awakening of dormant cells. Therapies aimed at preventing dormant cell awakening could potentially prolong the survival of cancer patients.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury

                Bookmark

                Author and article information

                Journal
                Acc Chem Res
                Acc Chem Res
                ar
                achre4
                Accounts of Chemical Research
                American Chemical Society
                0001-4842
                1520-4898
                05 April 2022
                19 April 2022
                : 55
                : 8
                : 1183-1193
                Affiliations
                Centre for Inflammation Research, The University of Edinburgh , EH16 4TJ Edinburgh, U.K.
                Author notes
                Author information
                https://orcid.org/0000-0002-5392-9740
                Article
                10.1021/acs.accounts.2c00070
                9022227
                35380423
                ea10b991-3021-44d3-a474-0c17246b5e02
                © 2022 American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 03 February 2022
                Funding
                Funded by: Wellcome Trust, doi 10.13039/100004440;
                Award ID: NA
                Funded by: H2020 European Research Council, doi 10.13039/100010663;
                Award ID: 771443
                Categories
                Article
                Custom metadata
                ar2c00070
                ar2c00070

                General chemistry
                General chemistry

                Comments

                Comment on this article