23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Visceral Pain

      1 , 2 , 1 , 2 , 1 , 2
      Annual Review of Physiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome.

          The mechanisms underlying abdominal pain perception in irritable bowel syndrome (IBS) are poorly understood. Intestinal mast cell infiltration may perturb nerve function leading to symptom perception. We assessed colonic mast cell infiltration, mediator release, and spatial interactions with mucosal innervation and their correlation with abdominal pain in IBS patients. IBS patients were diagnosed according to Rome II criteria and abdominal pain quantified according to a validated questionnaire. Colonic mucosal mast cells were identified immunohistochemically and quantified with a computer-assisted counting method. Mast cell tryptase and histamine release were analyzed immunoenzymatically. Intestinal nerve to mast cell distance was assessed with electron microscopy. Thirty-four out of 44 IBS patients (77%) showed an increased area of mucosa occupied by mast cells as compared with controls (9.2% +/- 2.5% vs. 3.3 +/- 0.8%, respectively; P < 0.001). There was a 150% increase in the number of degranulating mast cells (4.76 +/- 3.18/field vs. 2.42 +/- 2.26/field, respectively; P = 0.026). Mucosal content of tryptase was increased in IBS and mast cells spontaneously released more tryptase (3.22 +/- 3.48 pmol/min/mg vs. 0.87 +/- 0.65 pmol/min/mg, respectively; P = 0.015) and histamine (339.7 +/- 59.0 ng/g vs. 169.3 +/- 130.6 ng/g, respectively; P = 0.015). Mast cells located within 5 microm of nerve fibers were 7.14 +/- 3.87/field vs. 2.27 +/- 1.63/field in IBS vs. controls (P < 0.001). Only mast cells in close proximity to nerves were significantly correlated with severity and frequency of abdominal pain/discomfort (P < 0.001 and P = 0.003, respectively). Colonic mast cell infiltration and mediator release in proximity to mucosal innervation may contribute to abdominal pain perception in IBS patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors.

            Abdominal pain is common in the general population and, in patients with irritable bowel syndrome, is attributed to visceral hypersensitivity. We found that oral administration of specific Lactobacillus strains induced the expression of mu-opioid and cannabinoid receptors in intestinal epithelial cells, and mediated analgesic functions in the gut-similar to the effects of morphine. These results suggest that the microbiology of the intestinal tract influences our visceral perception, and suggest new approaches for the treatment of abdominal pain and irritable bowel syndrome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome.

              Intestinal mast cell infiltration may participate to abdominal pain in irritable bowel syndrome (IBS) patients. However, the underlying mechanisms remain unknown. We assessed the effect of mast cell mediators released from the colonic mucosa of IBS patients on the activation of rat sensory neurons in vitro. Colonic mast cell infiltration and mediator release were assessed with quantitative immunofluorescence and immunoenzymatic assays. The effect of mucosal mediators was tested on mesenteric sensory nerve firing and Ca(2+) mobilization in dorsal root ganglia in rats. Mediators from IBS patients, but not controls, markedly enhanced the firing of mesenteric nerves (14.7 +/- 3.2 imp/sec vs 2.8 +/- 1.5 imp/sec; P < .05) and stimulated mobilization of Ca(2+) in dorsal root ganglia neurons (29% +/- 4% vs 11% +/- 4%; P < .05). On average, 64% of dorsal root ganglia responsive to mediators were capsaicin-sensitive, known to mediate nociception. Histamine and tryptase were mainly localized to mucosal mast cells. IBS-dependent nerve firing and Ca(2+) mobilization were correlated with the area of the colonic lamina propria occupied by mast cells (r = 0.74; P < .01, and r = 0.78; P < .01, respectively). IBS-dependent excitation of dorsal root ganglia was inhibited by histamine H(1) receptor blockade and serine protease inactivation (inhibition of 51.7%; P < .05 and 74.5%; P < .05; respectively). Mucosal mast cell mediators from IBS patients excite rat nociceptive visceral sensory nerves. These results provide new insights into the mechanism underlying visceral hypersensitivity in IBS.
                Bookmark

                Author and article information

                Journal
                Annual Review of Physiology
                Annu. Rev. Physiol.
                Annual Reviews
                0066-4278
                1545-1585
                February 10 2019
                February 10 2019
                : 81
                : 1
                : 261-284
                Affiliations
                [1 ]Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia;
                [2 ]Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
                Article
                10.1146/annurev-physiol-020518-114525
                30379615
                ea09ea02-c6d5-4775-b8c1-3fb7bfe90080
                © 2019
                History

                Comments

                Comment on this article