4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple annotation for biodiversity: developing an annotation framework among biology, linguistics and text technology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biodiversity information is contained in countless digitized and unprocessed scholarly texts. Although automated extraction of these data has been gaining momentum for years, there are still innumerable text sources that are poorly accessible and require a more advanced range of methods to extract relevant information. To improve the access to semantic biodiversity information, we have launched the BIOfid project ( www.biofid.de) and have developed a portal to access the semantics of German language biodiversity texts, mainly from the 19th and 20th century. However, to make such a portal work, a couple of methods had to be developed or adapted first. In particular, text-technological information extraction methods were needed, which extract the required information from the texts. Such methods draw on machine learning techniques, which in turn are trained by learning data. To this end, among others, we gathered the bio text corpus, which is a cooperatively built resource, developed by biologists, text technologists, and linguists. A special feature of bio is its multiple annotation approach, which takes into account both general and biology-specific classifications, and by this means goes beyond previous, typically taxon- or ontology-driven proper name detection. We describe the design decisions and the genuine Annotation Hub Framework underlying the bio annotations and present agreement results. The tools used to create the annotations are introduced, and the use of the data in the semantic portal is described. Finally, some general lessons, in particular with multiple annotation projects, are drawn.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The FAIR Guiding Principles for scientific data management and stewardship

          There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            More than 75 percent decline over 27 years in total flying insect biomass in protected areas

            Global declines in insects have sparked wide interest among scientists, politicians, and the general public. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and to jeopardize ecosystem services. Our understanding of the extent and underlying causes of this decline is based on the abundance of single species or taxonomic groups only, rather than changes in insect biomass which is more relevant for ecological functioning. Here, we used a standardized protocol to measure total insect biomass using Malaise traps, deployed over 27 years in 63 nature protection areas in Germany (96 unique location-year combinations) to infer on the status and trend of local entomofauna. Our analysis estimates a seasonal decline of 76%, and mid-summer decline of 82% in flying insect biomass over the 27 years of study. We show that this decline is apparent regardless of habitat type, while changes in weather, land use, and habitat characteristics cannot explain this overall decline. This yet unrecognized loss of insect biomass must be taken into account in evaluating declines in abundance of species depending on insects as a food source, and ecosystem functioning in the European landscape.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              WordNet: a lexical database for English

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Language Resources and Evaluation
                Lang Resources & Evaluation
                Springer Science and Business Media LLC
                1574-020X
                1574-0218
                September 2022
                August 04 2021
                September 2022
                : 56
                : 3
                : 807-855
                Article
                10.1007/s10579-021-09553-5
                e9f4e550-1648-4c0a-992c-bc904be7d1e5
                © 2022

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article