Reproduction in fishes is sensitive to temperature. Elevated temperatures and anomalous ‘heat waves’ associated with climate change have the potential to impact fish reproductive performance and, in some cases, even induce sex reversals. Here we examine how thermal sensitivity in the hormone pathways regulating reproduction provides a framework for understanding impacts of warmer conditions on fish reproduction. Such effects will differ depending on evolved variation in temperature sensitivity of endocrine pathways regulating reproductive processes of sex determination/differentiation, gametogenesis and spawning, as well as how developmental timing of those processes varies with reproductive ecology. For fish populations unable to shift geographical range, persistence under future climates may require changes in temperature responsiveness of the hormone pathways regulating reproductive processes. How thermal sensitivity in those hormone pathways varies among populations and species, how those pathways generate temperature maxima for reproduction, and how rapidly reproductive thermal tolerances can change via adaptation or transgenerational plasticity will shape which fishes are most at risk for impaired reproduction under rising temperatures.
This article is part of the theme issue ‘Endocrine responses to environmental variation: conceptual approaches and recent developments’.