22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucansucrases have a broad acceptor substrate specificity and receive increased attention as biocatalysts for the glycosylation of small non-carbohydrate molecules using sucrose as donor substrate. However, the main glucansucrase-catalyzed reaction results in synthesis of α-glucan polysaccharides from sucrose, and this strongly impedes the efficient glycosylation of non-carbohydrate molecules and complicates downstream processing of glucosylated products. This paper reports that suppressing α-glucan synthesis by mutational engineering of the Gtf180-ΔN enzyme of Lactobacillus reuteri 180 results in the construction of more efficient glycosylation biocatalysts. Gtf180-ΔN mutants (L938F, L981A, and N1029M) with an impaired α-glucan synthesis displayed a substantial increase in monoglycosylation yields for several phenolic and alcoholic compounds. Kinetic analysis revealed that these mutants possess a higher affinity for the model acceptor substrate catechol but a lower affinity for its mono-α- d-glucoside product, explaining the improved monoglycosylation yields. Analysis of the available high resolution 3D crystal structure of the Gtf180-ΔN protein provided a clear understanding of how mutagenesis of residues L938, L981, and N1029 impaired α-glucan synthesis, thus yielding mutants with an improved glycosylation potential.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s00253-016-7476-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria.

          Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and alpha-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with alpha-amylase enzymes (family GH13), with a predicted permuted (beta/alpha)(8) barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of alpha-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize beta-fructan polymers with either beta-(2-->6) (inulin) or beta-(2-->1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed beta-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either beta-(2-->6) or beta-(2-->1) linkages, degree and type of branching, and fructan molecular mass remain to be identified.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts.

            Glycosylation can significantly improve the physicochemical and biological properties of small molecules like vitamins, antibiotics, flavors, and fragrances. The chemical synthesis of glycosides is, however, far from trivial and involves multistep routes that generate lots of waste. In this review, biocatalytic alternatives are presented that offer both stricter specificities and higher yields. The advantages and disadvantages of different enzyme classes are discussed and illustrated with a number of recent examples. Progress in the field of enzyme engineering and screening are expected to result in new applications of biocatalytic glycosylation reactions in various industrial sectors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes.

              Glucansucrases are large enzymes belonging to glycoside hydrolase family 70, which catalyze the cleavage of sucrose into fructose and glucose, with the concomitant transfer of the glucose residue to a growing α-glucan polymer. Among others, plaque-forming oral bacteria secrete these enzymes to produce α-glucans, which facilitate the adhesion of the bacteria to the tooth enamel. We determined the crystal structure of a fully active, 1,031-residue fragment encompassing the catalytic and C-terminal domains of GTF180 from Lactobacillus reuteri 180, both in the native state, and in complexes with sucrose and maltose. These structures show that the enzyme has an α-amylase-like (β/α)(8)-barrel catalytic domain that is circularly permuted compared to the catalytic domains of members of glycoside hydrolase families 13 and 77, which belong to the same GH-H superfamily. In contrast to previous suggestions, the enzyme has only one active site and one nucleophilic residue. Surprisingly, in GTF180 the peptide chain follows a "U"-path, such that four of the five domains are made up from discontiguous N- and C-terminal stretches of the peptide chain. Finally, the structures give insight into the factors that determine the different linkage types in the polymeric product.
                Bookmark

                Author and article information

                Contributors
                l.dijkhuizen@rug.nl
                Journal
                Appl Microbiol Biotechnol
                Appl. Microbiol. Biotechnol
                Applied Microbiology and Biotechnology
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0175-7598
                1432-0614
                6 April 2016
                6 April 2016
                2016
                : 100
                : 7529-7539
                Affiliations
                [1 ]Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
                [2 ]Centre for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
                Article
                7476
                10.1007/s00253-016-7476-x
                4980424
                27052379
                e9e882a6-7bd8-4bb2-874f-df5a7dc98e2b
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 9 February 2016
                : 8 March 2016
                : 15 March 2016
                Funding
                Funded by: Ubbo Emmius Fund
                Funded by: FundRef http://dx.doi.org/10.13039/501100007229, Bijzonder Onderzoeksfonds;
                Award ID: 01SF2413
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004543, China Scholarship Council;
                Funded by: EU Project NOVOSIDES
                Award ID: FP7-KBBE-543 2010-4-265854
                Award Recipient :
                Categories
                Biotechnologically Relevant Enzymes and Proteins
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Biotechnology
                glycosylation,glucansucrase,catechol,lactobacillus reuteri,acceptor reaction,enzyme engineering

                Comments

                Comment on this article