5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A small, portable RNA device for the control of exon skipping in mammalian cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Splicing is an essential and highly regulated process in mammalian cells. We developed a synthetic riboswitch that efficiently controls alternative splicing of a cassette exon in response to the small molecule ligand tetracycline. The riboswitch was designed to control the accessibility of the 3′ splice site by placing the latter inside the closing stem of a conformationally controlled tetracycline aptamer. In the presence of tetracycline, the cassette exon is skipped, whereas it is included in the ligand's absence. The design allows for an easy, context-independent integration of the regulatory device into any gene of interest. Portability of the device was shown through its functionality in four different systems: a synthetic minigene, a reporter gene and two endogenous genes. Furthermore, riboswitch functionality to control cellular signaling cascades was demonstrated by using it to specifically induce cell death through the conditionally controlled expression of CD20, which is a target in cancer therapy.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase.

          L Gold, C Tuerk (1990)
          High-affinity nucleic acid ligands for a protein were isolated by a procedure that depends on alternate cycles of ligand selection from pools of variant sequences and amplification of the bound species. Multiple rounds exponentially enrich the population for the highest affinity species that can be clonally isolated and characterized. In particular one eight-base region of an RNA that interacts with the T4 DNA polymerase was chosen and randomized. Two different sequences were selected by this procedure from the calculated pool of 65,536 species. One is the wild-type sequence found in the bacteriophage mRNA; one is varied from wild type at four positions. The binding constants of these two RNA's to T4 DNA polymerase are equivalent. These protocols with minimal modification can yield high-affinity ligands for any protein that binds nucleic acids as part of its function; high-affinity ligands could conceivably be developed for any target molecule.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-input RNAi-based logic circuit for identification of specific cancer cells.

            Engineered biological systems that integrate multi-input sensing, sophisticated information processing, and precisely regulated actuation in living cells could be useful in a variety of applications. For example, anticancer therapies could be engineered to detect and respond to complex cellular conditions in individual cells with high specificity. Here, we show a scalable transcriptional/posttranscriptional synthetic regulatory circuit--a cell-type "classifier"--that senses expression levels of a customizable set of endogenous microRNAs and triggers a cellular response only if the expression levels match a predetermined profile of interest. We demonstrate that a HeLa cancer cell classifier selectively identifies HeLa cells and triggers apoptosis without affecting non-HeLa cell types. This approach also provides a general platform for programmed responses to other complex cell states.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The structural and functional diversity of metabolite-binding riboswitches.

              The cellular concentrations of certain metabolites are assiduously monitored to achieve appropriate levels of gene expression. Although proteins have long been known to act as sensors in this capacity, metabolite-binding RNAs, or riboswitches, also play an important role. More than 20 distinct classes of riboswitches have been identified to date, and insights to the molecular recognition strategies of a significant subset of these have been provided by detailed structural studies. This diverse set of metabolite-sensing RNAs is found to exploit a variety of distinct mechanisms to regulate genes that are fundamental to metabolism.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                04 May 2018
                06 February 2018
                06 February 2018
                : 46
                : 8
                : e48
                Affiliations
                [1 ]Department of Biology, Technical University Darmstadt, Schnittspahnstr. 10, 64287 Darmstadt, Germany
                [2 ]Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42–44, 60596 Frankfurt/M, Germany
                Author notes
                To whom correspondence should be addressed. Tel: +49 6151 1622000; Fax: +49 6151 1622003; Email: bsuess@ 123456bio.tu-darmstadt.de
                Article
                gky062
                10.1093/nar/gky062
                5934650
                29420816
                e9e65ab0-58a9-457e-bb01-ce27a39c1d29
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 29 January 2018
                : 15 January 2018
                : 11 September 2016
                Page count
                Pages: 12
                Funding
                Funded by: Deutsche Forschungsgemeinschaft 10.13039/501100001659
                Award ID: SFB902/A2
                Award ID: SFB902/B14
                Funded by: European Commission 10.13039/501100000780
                Award ID: H2020
                Categories
                Methods Online

                Genetics
                Genetics

                Comments

                Comment on this article