4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of RNA stability during bacterial stress responses and starvation. Minireview

      ,
      Environmental Microbiology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli.

          The RNA-binding protein CsrA (carbon storage regulator) is a new kind of global regulator, which facilitates specific mRNA decay. A recombinant CsrA protein containing a metal-binding affinity tag (CsrA-H6) was purified to homogeneity and authenticated by N-terminal sequencing, matrix-assisted laser desorption/ionization time of flight mass spectrometry, and other studies. This protein was entirely contained within a globular complex of approximately 18 CsrA-H6 subunits and a single approximately 350-nucleotide RNA, CsrB. cDNA cloning and nucleotide sequencing revealed that the csrB gene is located downstream from syd in the 64-min region of the Escherichia coli K-12 genome and contains no open reading frames. The purified CsrA-CsrB ribonucleoprotein complex was active in regulating glg (glycogen biosynthesis) gene expression in vitro, as was the RNA-free form of the CsrA protein. Overexpression of csrB enhanced glycogen accumulation in E. coli, a stationary phase process that is repressed by CsrA. Thus, CsrB RNA is a second component of the Csr system, which binds to CsrA and antagonizes its effects on gene expression. A model for regulatory interactions in Csr is presented, which also explains previous observations on the homologous system in Erwinia carotovora. A highly repeated nucleotide sequence located within predicted stem-loops and other single-stranded regions of CsrB, CAGGA(U/A/C)G, is a plausible CsrA-binding element.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB.

            T Romeo (1998)
            Csr (carbon storage regulator) is a recently discovered global regulatory system that controls bacterial gene expression post-transcriptionally. Its effector is a small RNA-binding protein referred to as CsrA or, in phytopathogenic Erwinia species, RsmA (repressor of stationary phase metabolites). Numerous genes whose expression occurs in the stationary phase of growth are repressed by csrA/rsmA, and csrA activates certain exponential-phase metabolic pathways. Glycogen synthesis and catabolism, gluconeogenesis, glycolysis, motility, cell surface properties and adherence are modulated by csrA in Escherichia coli, while the production of several secreted virulence factors, the plant hypersensitive response elicitor HrpN(Ecc) and, potentially, other secondary metabolites are regulated by rsmA in Erwinia carotovora. CsrA represses glycogen synthesis by binding to and destabilizing glgCAP mRNA and is hypothesized to repress other genes by a similar mechanism. The second component of the Csr system is CsrB (AepH in Erwinia species), a non-coding RNA molecule that forms a large globular ribonucleoprotein complex with approximately 18 CsrA subunits and antagonizes the effects of CsrA in vivo. Highly repeated sequence elements found within the loops of predicted stem-loops and other single-stranded segments of CsrB RNA may facilitate CsrA binding. Current information supports a model in which CsrA exists in an equilibrium between CsrB and CsrA-regulated mRNAs, which predicts that CsrB levels may be a key determinant of CsrA activity in the cell. The presence of csrA homologues in phylogenetically diverse species further suggests that this novel kind of regulatory system is likely to play a broad role in modulating eubacterial gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The alternative sigma factor katF (rpoS) regulates Salmonella virulence.

              Nutrient limitation is a critical signal in Salmonella virulence gene regulation. The katF (rpoS) gene mediates the expression of the Salmonella spv plasmid virulence genes during bacterial starvation. A katF Salmonella mutant has increased susceptibility to nutrient deprivation, oxidative stress, acid stress, and DNA damage, conditions which are relevant to the intraphagosomal environment of host macrophages. Moreover, the katF mutant has significantly reduced virulence in mice. katF encodes an alternative sigma factor of RNA polymerase which coordinately regulates Salmonella virulence.
                Bookmark

                Author and article information

                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                1462-2912
                1462-2920
                August 2000
                August 2000
                : 2
                : 4
                : 355-365
                Article
                10.1046/j.1462-2920.2000.00119.x
                e9aaca88-dea1-469d-a4f8-d980dcd46440
                © 2000

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article